首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

2.
Sufficient geometric conditions are given which determine when the Cauchy–Pexider functional equation f(x)g(y) = h(x + y) restricted to x, y lying on a hypersurface in ${\mathbb{R}^d}$ has only solutions which extend uniquely to exponential affine functions ${\mathbb{R}^d \to \mathbb{C}}$ (when f, g, h are assumed to be measurable and non-trivial). The Cauchy–Pexider-type functional equations ${\prod_{j=0}^df_j(x_j)=F(\sum_{j=0}^dx_j)}$ for ${x_0, \ldots,x_d}$ lying on a curve and ${f_1(x_1)f_2(x_2)f_3(x_3)=F(x_1+x_2+x_3)}$ for x 1, x 2, x 3 lying on a hypersurface are also considered.  相似文献   

3.
Let R be a ring with center Z(R). An additive mapping ${F : R \longrightarrow R}$ is said to be a generalized derivation on R if there exists a derivation ${d : R \longrightarrow R}$ such that F(xy) = F(x)y + xd(y), for all ${x, y \in R}$ (the map d is called the derivation associated with F). Let R be a semiprime ring and U be a nonzero left ideal of R. In the present note we prove that if R admits a generalized derivation F, d is the derivation associated with F such that d(U) ≠ (0) then R contains some nonzero central ideal, if one of the following conditions holds: (1) R is 2-torsion free and ${F(xy) \in Z(R)}$ , for all ${x, y \in U}$ , unless F(U)U = UF(U) = Ud(U) = (0); (2) ${F(xy) \mp yx \in Z(R)}$ , for all ${x,y \in U}$ ; (3) ${F(xy) \mp [x,y] \in Z(R)}$ , for all ${x,y \in U}$ ; (4) F ≠ 0 and F([x,y]) = 0, for all ${x, y \in U}$ , unless Ud(U) = (0); (5) F ≠ 0 and ${F([x, y]) \in Z(R)}$ , for all ${x, y \in U}$ , unless either d(Z(R))U = (0) or Ud(U) = (0)n.  相似文献   

4.
We prove that the operator ${Tf(x,y)=\int^\pi_{-\pi}\int_{|x^{\prime}|<|y^{\prime}|} \frac{e^{iN(x,y) x^{\prime}}}{x^{\prime}}\frac{e^{iN(x,y) y^{\prime}}}{y^{\prime}}f(x-x^{\prime}, y-y^{\prime}) dx^{\prime} dy^{\prime}}$ , with ${x,y \in[0,2\pi]}$ and where the cut off ${|x^{\prime}|<|y^{\prime}|}$ is performed in a smooth and dyadic way, is bounded from L 2 to weak- ${L^{2-\epsilon}}$ , any ${\epsilon > 0 }$ , under the basic assumption that the real-valued measurable function N(x, y) is “mainly” a function of y and the additional assumption that N(x, y) is non-decreasing in x, for every y fixed. This is an extension to 2D of C. Fefferman’s proof of a.e. convergence of Fourier series of L 2 functions.  相似文献   

5.
This paper concerns the existence and asymptotic characterization of saddle solutions in ${\mathbb {R}^{3}}$ for semilinear elliptic equations of the form $$-\Delta u + W'(u) = 0,\quad (x, y, z) \in {\mathbb {R}^{3}} \qquad\qquad\qquad (0.1)$$ where ${W \in \mathcal{C}^{3}(\mathbb {R})}$ is a double well symmetric potential, i.e. it satisfies W(?s) =  W(s) for ${s \in \mathbb {R},W(s) > 0}$ for ${s \in (-1,1)}$ , ${W(\pm 1) = 0}$ and ${W''(\pm 1) > 0}$ . Denoted with ${\theta_{2}}$ the saddle planar solution of (0.1), we show the existence of a unique solution ${\theta_{3} \in {\mathcal{C}^{2}}(\mathbb {R}^{3})}$ which is odd with respect to each variable, symmetric with respect to the diagonal planes, verifies ${0 < \theta_{3}(x,y,z) < 1}$ for x, y, z >  0 and ${\theta_{3}(x, y, z) \to_{z \to + \infty} \theta_{2}(x, y)}$ uniformly with respect to ${(x, y) \in \mathbb {R}^{2}}$ .  相似文献   

6.
Let R be a ring. A map ${F : R \rightarrow R}$ F : R → R is called a multiplicative (generalized)-derivation if F(xy) = F(x)yxg(y) is fulfilled for all ${x, y \in R}$ x , y ∈ R where ${g : R \rightarrow R}$ g : R → R is any map (not necessarily derivation). The main objective of the present paper is to study the following situations: (i) ${F(xy) \pm xy \in Z}$ F ( xy ) ± xy ∈ Z , (ii) ${F(xy) \pm yx \in Z}$ F ( xy ) ± yx ∈ Z , (iii) ${F(x)F(y) \pm xy \in Z}$ F ( x ) F ( y ) ± xy ∈ Z and (iv) ${F(x)F(y) \pm yx \in Z}$ F ( x ) F ( y ) ± yx ∈ Z for all x, y in some appropriate subset of R. Moreover, some examples are also given.  相似文献   

7.
We consider the following perturbed version of quasilinear Schrödinger equation $$\begin{array}{lll}-\varepsilon^2\Delta u +V(x)u-\varepsilon^2\Delta (u^2)u=h(x,u)u+K(x)|u|^{22^*-2}u\end{array}$$ in ${\mathbb{R}^N}$ , where N ≥ 3, 22* = 4N/(N ? 2), V(x) is a nonnegative potential, and K(x) is a bounded positive function. Using minimax methods, we show that this equation has at least one positive solution provided that ${\varepsilon \leq \mathcal{E}}$ ; for any ${m\in\mathbb{N}}$ , it has m pairs of solutions if ${\varepsilon \leq \mathcal{E}_m}$ , where ${\mathcal{E}}$ and ${\mathcal{E}_m}$ are sufficiently small positive numbers. Moreover, these solutions ${u_\varepsilon \to 0}$ in ${H^1(\mathbb{R}^N)}$ as ${\varepsilon \to 0}$ .  相似文献   

8.
Let G be a connected graph. For ${x,y\in V(G)}$ with d(x, y) = 2, we define ${J(x,y)= \{u \in N(x)\cap N(y)\mid N[u] \subseteq N[x] \,{\cup}\,N[y] \}}$ and ${J'(x,y)= \{u \in N(x) \cap N(y)\,{\mid}\,{\rm if}\ v \in N(u){\setminus}(N[x] \,{\cup}\, N[y])\ {\rm then}\ N[x] \,{\cup}\, N[y]\,{\cup}\,N[u]{\setminus}\{x,y\}\subseteq N[v]\}}$ . A graph G is quasi-claw-free if ${J(x,y) \not= \emptyset}$ for each pair (x, y) of vertices at distance 2 in G. Broersma and Vumar (in Math Meth Oper Res. doi:10.1007/s00186-008-0260-7) introduced ${\mathcal{P}_{3}}$ -dominated graphs defined as ${J(x,y)\,{\cup}\, J'(x,y)\not= \emptyset}$ for each ${x,y \in V(G)}$ with d(x, y) = 2. This class properly contains that of quasi-claw-free graphs, and hence that of claw-free graphs. In this note, we prove that a 2-connected ${\mathcal{P}_3}$ -dominated graph is 1-tough, with two exceptions: K 2,3 and K 1,1,3, and prove that every even connected ${\mathcal{P}_3}$ -dominated graph ${G\ncong K_{1,3}}$ has a perfect matching. Moreover, we show that every even (2p + 1)-connected ${\mathcal{P}_3}$ -dominated graph is p-extendable. This result follows from a stronger result concerning factor-criticality of ${\mathcal{P}_3}$ -dominated graphs.  相似文献   

9.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

10.
We consider a class of semilinear elliptic equations of the form $$ \label{eq:abs}-\Delta u(x,y,z)+a(x)W'(u(x,y,z))=0,\quad (x,y,z)\in\mathbb {R}^{3},$$ where ${a:\mathbb {R} \to \mathbb {R}}$ is a periodic, positive, even function and, in the simplest case, ${W : \mathbb {R} \to \mathbb {R}}$ is a double well even potential. Under non degeneracy conditions on the set of minimal solutions to the one dimensional heteroclinic problem $$-\ddot q(x)+a(x)W^{\prime}(q(x))=0,\ x\in\mathbb {R},\quad q(x)\to\pm1\,{\rm as}\, x\to \pm\infty,$$ we show, via variational methods the existence of infinitely many geometrically distinct solutions u of (0.1) verifying u(x, y, z) → ± 1 as x → ± ∞ uniformly with respect to ${(y, z) \in \mathbb {R}^{2}}$ and such that ${\partial_{y}u \not \equiv0, \partial_{z}u \not\equiv 0}$ in ${\mathbb {R}^{3}}$ .  相似文献   

11.
Stickelberger–Swan Theorem is an important tool for determining parity of the number of irreducible factors of a given polynomial. Based on this theorem, we prove in this note that every affine polynomial A(x) over ${\mathbb{F}_2}$ with degree >1, where A(x) = L(x) + 1 and ${L(x)=\sum_{i=0}^{n}{x^{2^i}}}$ is a linearized polynomial over ${\mathbb{F}_2}$ , is reducible except x 2 + x + 1 and x 4 + x + 1. We also give some explicit factors of some special affine pentanomials over ${\mathbb{F}_2}$ .  相似文献   

12.
Let G B (x, y) be the Green’s function of the unit ball B in ${\mathbb{R}^n, n \ge 3,}$ and ${\Gamma_B (x,y)=\int_BG_B(x, z)G_B(z, y)dz}$ the iterated Green’s function. The function $$E_x^y(\tau_B) = \frac{\Gamma_B(x, y)}{G_B(x, y)}$$ is the expectation of the lifetime of a Brownian motion starting at ${x \in \overline{B}}$ , killed on exiting B and conditioned to converge to and to be stopped at ${y \in \overline{B}}$ . The aim of the paper is to prove that $$\sup_{x \in \partial B,y \in B} E_x^y(\tau_B) = \sup_{x,y \in \partial B} E_x^y(\tau_B) = E_{x_0}^{-x_0}(\tau_B), x_0 \in\partial B$$ and that the maximum value of ${E_x^y(\tau_B)}$ occurs if and only if x, y are diametrically opposite points on the boundary of B.  相似文献   

13.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

14.
15.
David Eppstein 《Order》2014,31(1):81-99
We generalize the $\frac{1}{3}$ $\frac{2}{3}$ conjecture from partially ordered sets to antimatroids: we conjecture that any antimatroid has a pair of elements x,y such that x has probability between $\frac{1}{3}$ and $\frac{2}{3}$ of appearing earlier than y in a uniformly random basic word of the antimatroid. We prove the conjecture for antimatroids of convex dimension two (the antimatroid-theoretic analogue of partial orders of width two), for antimatroids of height two, for antimatroids with an independent element, and for the perfect elimination antimatroids and node search antimatroids of several classes of graphs. A computer search shows that the conjecture is true for all antimatroids with at most six elements.  相似文献   

16.
In this paper, we provide the Euler?CMaclaurin expansions for (offset) trapezoidal rule approximations of the finite-range integrals $I[f]=\int^{b}_{a}f(x)\,dx$ , where f??C ??(a,b) but can have general algebraic-logarithmic singularities at one or both endpoints. These integrals may exist either as ordinary integrals or as Hadamard finite part integrals. We assume that f(x) has asymptotic expansions of the general forms where $\widehat{P}(y),P_{s}(y)$ and $\widehat{Q}(y),Q_{s}(y)$ are polynomials in y. The ?? s and ?? s are distinct, complex in general, and different from ?1. They also satisfy The results we obtain in this work extend the results of a recent paper [A.?Sidi, Numer. Math. 98:371?C387, 2004], which pertain to the cases in which $\widehat{P}(y)\equiv0$ and $\widehat{Q}(y)\equiv0$ . They are expressed in very simple terms based only on the asymptotic expansions of f(x) as x??a+ and x??b?. The results we obtain in this work generalize, and include as special cases, all those that exist in the literature. Let $D_{\omega}=\frac{d}{d\omega}$ , h=(b?a)/n, where n is a positive integer, and define $\check{T}_{n}[f]=h\sum^{n-1}_{i=1}f(a+ih)$ . Then with $\widehat{P}(y)=\sum^{\hat{p}}_{i=0}{\hat{c}}_{i}y^{i}$ and $\widehat{Q}(y)=\sum^{\hat{q}}_{i=0}{\hat{d}}_{i}y^{i}$ , one of these results reads where ??(z) is the Riemann Zeta function and ?? i are Stieltjes constants defined via $\sigma_{i}= \lim_{n\to\infty}[\sum^{n}_{k=1}\frac{(\log k)^{i}}{k}-\frac{(\log n)^{i+1}}{i+1}]$ , i=0,1,???.  相似文献   

17.
Let R be a prime, locally matrix ring of characteristic not 2 and let Q ms (R) be the maximal symmetric ring of quotients of R. Suppose that ${\delta}\colon R\to Q_{ms}(R)$ is a Jordan τ-derivation, where τ is an anti-automorphism of R. Then there exists a?∈?Q ms (R) such that δ(x)?=?xa???(x) for all x?∈?R. Let X be a Banach space over the field ${\mathbb F}$ of real or complex numbers and let ${\mathcal B}(X)$ be the algebra of all bounded linear operators on X. We prove that $Q_{ms}({\mathcal B}(X))={\mathcal B}(X)$ , which provides the viewpoint of ring theory for some results concerning derivations on the algebra ${\mathcal B}(X)$ . In particular, all Jordan τ-derivations of ${\mathcal B}(X)$ are inner if $\text{dim}_{\mathbb F}X>1$ .  相似文献   

18.
If $f\in L^{p}(\mathbb{R}^{d})$ is a bounded real valued continuous function which has a unique maximum or a unique minimum at a point $x_{0}\in \mathbb{R}^{d}$ and if the inverse image of the neighborhoods of f(x 0) shrinks regularly to x 0, then $\mathrm{ span }\{f^{m}(x-2^{-m}\varSigma_{i=1}^{d} j_{i} e_{i})\mid m\in\mathbb{N}, j_{i}\in\mathbb{Z}\}$ is a dense subset of $L^{p}(\mathbb{R}^{d}), 1\le p<\infty$ where f m (x)=f(x) m and {e i } is the natural basis of $\mathbb{R}^{d}$ . The result extends to all homogeneous groups, Riemannian symmetric spaces of noncompact type, Damek-Ricci spaces etc.  相似文献   

19.
Let ${I\subset\mathbb{R}}$ be a nonvoid open interval and let L : I 2I be a fixed strict mean. A function M : I 2I is said to be an L-conjugate mean on I if there exist ${p,q\in\,]0,1]}$ and ${\varphi\in CM(I)}$ such that $$M(x,y):=\varphi^{-1}(p\varphi(x)+q\varphi(y)+(1-p-q) \varphi(L(x,y)))=:L_\varphi^{(p,q)}(x,y),$$ for all ${x,y\in I}$ . Here L(x, y) : = A χ(x, y) ${(x,y\in I)}$ is a fixed quasi-arithmetic mean with the fixed generating function ${\chi\in CM(I)}$ . We examine the following question: which L-conjugate means are weighted quasi-arithmetic means with weight ${r\in\, ]0,1[}$ at the same time? This question is a functional equation problem: Characterize the functions ${\varphi,\psi\in CM(I)}$ and the parameters ${p,q\in\,]0,1]}$ , ${r\in\,]0,1[}$ for which the equation $$L_\varphi^{(p,q)}(x,y)=L_\psi^{(r,1-r)}(x,y)$$ holds for all ${x,y\in I}$ .  相似文献   

20.
Let ${I\subset\mathbb{R}}$ be a nonempty open interval and let ${L:I^2\to I}$ be a fixed strict mean. A function ${M:I^2\to I}$ is said to be an L-conjugate mean on I if there exist ${p,q\in{]}0,1]}$ and a strictly monotone and continuous function φ such that $$M(x,y):=\varphi^{-1}(p\varphi(x)+q\varphi(y)+(1-p-q)\varphi(L(x,y)))=:L_\varphi^{(p,q)}(x,y),$$ for all ${x,y\in I}$ . Here L(x, y) is a fixed quasi-arithmetic mean. We will solve the equality problem in this class of means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号