首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Phosphoric acid doped poly (2, 2′‐(m‐phenylene)‐5, 5′‐bibenzimidazole) (PBI) membranes were prepared by dissolving PBI powders in 85% phosphoric acid at 190–200°C and then promoting gelation of the PBI by cooling the solutions to ?18°C. The extent of acid doping of the PBI membranes was controlled by immersing the membrane in aqueous phosphoric acid solutions of different concentrations (acid de‐doping). The process of the acid de‐doping was faster than acid doping of membrane cast from N,N‐dimethylacetamide (DMAc). The de‐doping process caused shrinkage of the PBI membrane and thus an increase in the membrane strength due to the packing of PBI chains according to the X‐ray diffraction analysis. The tensile stress and proton conductivity of the obtained PBI membranes with different acid doping levels were measured. For a PBI (ηIV: 0.58 dL · g?1) membrane with an acid doping level of 7.0 (molar number of doped acid per mole repeat unit of PBI), the stress at break and proton conductivity at 120°C without humidification were 2.6 MPa and 5.1 × 10?2 S · cm?1, respectively. These results were comparable to those of the membranes cast from PBI solutions in DMAc. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Two new kinds of fluorine‐containing polybenzimidazoles (PBI), poly(2,2′‐(tetrafluoro‐p‐phenylene)‐5,5′‐bibenzimidazole) and poly(2,2′‐tetradecafluoroheptylene‐5,5′‐bibenzimidazole), were synthesized by condensation polymerization of 3,3′‐diaminobenzidine and perfluoroterephthalic acid (or perfluoroazelaic acid), with polyphosphoric acid as solvent. Thermogravimetric analysis results show that the fluorine‐containing polymers synthesized exhibit promising thermal stability. The film‐forming properties of the fluorine‐containing polymers are improved over nonfluorinated PBI. The introduction of fluorine into the backbone of the polymers has significant positive affection on their chemical oxidation stability demonstrated by Fenton test. Compared with poly(2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole)/phosphoric acid (PA) composite membrane, the resulting fluorinated membranes with a same PA doping level exhibit better flexibility and higher proton conductivity. The maximum proton conductivity gained is 3.05 × 10?2 S/cm at 150 °C with a PA doping level of 7. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2115–2122, 2010  相似文献   

3.
The selective identification of dopamine is a significant issue because this compound is an important neurotransmitter closely related to Parkinson’s disease and other mental disorders. 2-(4-Boronophenyl)quinoline-4-carboxylic acid (PBAQA) has been previously reported as a water-soluble fluorescent probe for catechol. However, there are no significant differences in the binding constants between catechol and catecholamines, such as dopamine or levodopa. Here a series of bis-boronic acid compounds based on PBAQA were synthesized and the binding activities were characterized. As a representative compound, the binding constant of 4-(4-((3-(3-borono-4-chlorobenzamido)propyl)carbamoyl)quinolin-2-yl)boronic acid to dopamine is up to 104?L?mol?1 and much higher than previously reported boronic acid probes. Dopamine selectivity may be achieved by the variation of the substituents in the probe molecules. 4-(4-((3-(3-Borono-4-methoxybenzamido)propyl)carbamoyl)quinolin-2-yl)boronic acid has a stronger binding affinity to dopamine (Ka=5204?±?106?L?mol?1) than catechol (Ka=2588?±?273?L?mol?1) or levodopa (Ka=2383?±?273?L?mol?1). This fluorescence response was used for determining dopamine in a range from 5?×?10?5?mol?L?1 to 5?×?10?4?mol?L?1 with a detection limit of 7.7?×?10?6?mol?L?1. This compound has been successfully used for the assay of dopamine in rabbit plasma, exhibiting excellent specificity. It is believed that synthesized compounds hold great promise as practical platforms to monitor dopamine levels.  相似文献   

4.
The effect of water vapor pressure on the molecular weight of molten poly (ethylene terephthalate) has been followed by measurement of the changes which occur in the intrinsic viscosity and the end-group concentrations upon hydrolysis. It was found that phosphoric acid is highly effective as a stabilizer; the hydrolysis rate constant (Kh) decreasing from 7.6 × 10?7 mol?1s?1 for nonstabilized to 2.5 × 10?7 mol?1s?1 for the stabilized polyester at 290°C and water vapor pressure of 20 mmHg.  相似文献   

5.
Polybenzimidazole (PBI) polymers tethered with N‐phenyl 1,2,4‐triazole (NPT) groups were prepared from a newly synthesized aromatic diacid, 3′‐(4‐phenyl‐4H‐1,2,4‐triazole‐3,5‐diyl) dibenzoic acid (PTDBA). The obtained polymers show superior thermal and chemical stability and good solubility in many aprotic solvents. The inherent viscosities of all polymers were around 1 dL/g. They exhibit high thermal stability with initial decomposition temperature ranging from 515 to 530 °C, high glass transition temperature ranging from 375 to 410 °C, and good mechanical properties with tensile stress in the range of 66–98 MPa and modulus 1897–2600 MPa. XRD analysis indicates that these polymers are amorphous in nature. Physicochemical properties such as water and phosphoric acid‐uptake, oxidative stability, and proton conductivity of membranes of these polymers have also been determined. The proton conductivity ranged from 4.7 × 10?3 to 1.8 × 10?2 S cm?1 at 175 °C in dry conditions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2289–2303, 2009  相似文献   

6.
The interaction of bovine serum albumin (BSA) with raloxifene was assessed via fluorescence spectroscopy. The number of binding sites and the apparent binding constants between raloxifene and BSA were analyzed using the Tachiya model and Stern-Volmer equation, respectively. The apparent binding constant and the number of binding sites at 298 K were 2.33×105 L?mol?1 and 1.0688 as obtained from the Stern-Volmer equation and 2.00×105 L?mol?1 and 2.6667 from the Tachiya model. The thermodynamic parameters ΔH and ΔS were calculated to be 69.46 kJ?mol?1 and 121.12 J?K?1?mol?1, respectively, suggesting that the force acting between raloxifene and BSA was mainly a hydrophobic interaction. The binding distance between the donor (BSA) and acceptor (raloxifene) was 4.77 nm according to Förster’s nonradiational energy transfer theory. It was also found that common metal ions such as K+, Cu2+, Zn2+, Mg2+ and Ca2+ decreased the apparent association constant and the number of binding sites between raloxifene and BSA.  相似文献   

7.
The interactions of the phenolic acids cinnamic acid (CNA), ferulic acid (FA), caffeic acid (CA) and chlorogenic acid (CLA) with bovine serum albumin (BSA) were investigated and compared using affinity capillary electrophoresis (ACE) and the fluorescence quenching methods. ACE gives binding constants (K b) and thermodynamic parameters. The thermodynamic parameters show that each of four phenolic acids bind to BSA mainly by hydrogen bonds, electrostatic and hydrophobic interactions. The fluorescence quenching method provided quenching constant K sv, binding site number n and K b. The fluorescence results indicate that BSA fluorescence quenching is mainly a static quenching process. The binding constants (K b) of CNA, FA, CA and CLA were from 2.52×104 to 7.90×104 L⋅mol−1 from ACE experiments and 1.19×104 to 5.21×104 L⋅mol−1 from fluorescence, their increase corresponded to the increase in the number of hydroxyl groups. These results imply that molecular structure and the number of hydroxyl groups of phenolic acids play act key roles in the affinity of natural phenolic acids towards BSA.  相似文献   

8.
Phosphoric acid‐doped crosslinked proton‐conducting membranes with high anhydrous proton conductivity, and good chemical stability in phosphoric acid were synthesized and characterized. The synthetic procedure of the acid‐doped composite membranes mainly involves the in situ crosslinking of polymerizable monomer oils (styrene and acrylonitrile) and vinylimidazole, and followed by the sulfonation of pendant imidazole groups with butanesultone, and further doped with phosphoric acid. The resultant phosphoric acid‐doped composite electrolyte membranes are flexible and show high thermal stability and high‐proton conductivity up to the order of 10?2 S cm?1 at 160 °C under anhydrous conditions. The phosphoric acid uptake, swelling degree, and proton conductivity of the composite membranes increase with the vinylimidazole content. The resultant composite membranes also show good oxidative stability in Fenton's reagent (at 70 °C), and quite good chemical stability in phosphoric acid (at 160 °C). The properties of the prepared electrolyte membranes indicate their promising prospects in anhydrous proton‐exchange membrane applications. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 , 51, 1311–1317  相似文献   

9.
The influences of reactant concentrations, solvent type, acid strength, pH conditions and ionic strength on the determination of apparent gas‐phase equilibrium constants K using electrospray ionisation mass spectrometry (ESI‐MS) were elucidated. As example serves the interaction of the tripeptide glutathione (GSH) with phenylarsine oxide (PAO). It was shown that rising initial concentrations of both reactants were not adequately compensated by increasing signal intensities of the reaction products in the mass spectra. The equilibrium constant for the formation of the phenylarsenic‐substituted peptide species decreased from 1.42 × 105 ± 1.81 × 104 l µmol?1 to 1.54 × 104 ± 1.5 × 103 l µmol?1 with rising initial GSH concentrations from 1 to 10 µM at fixed PAO molarity of 50 µM . K values resulting from a series with a fixed GSH molarity of 5 µM and a PAO molarity varied from 10 to 100 µM remained in a narrower range between 4.59 × 104 ± 2.15 × 104 l µmol?1 and 1.07 × 104 ± 4.0 × 103 l µmol?1. In contrast, consumption numbers calculated from the ion intensity ratios of reaction products to the unreacted peptide were not influenced by the initial reactant concentrations. In a water–acetonitrile–acetic acid mixture (48:50:2, v:v), the consumption of 5 µ M GSH increased from 8.3 ± 1.4% to 39.6 ± 1.6% with increased molar excess of PAO from 2 to 20, respectively. The GSH consumption was considerably enhanced in a changed solvent system consisting of 25% acetonitrile and 75% 10 mM ammonium formate, pH 5.0 (v:v) up to 80% of the original peptide amount at an only threefold molar arsenic excess. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The initiation reaction of the polymerization of α-methylstyrene by trityl tetrachloroferate and tritylhexachloroantimonate in 1,2-dichloroethane at 20°C was studied. The rate constants were 14 × 10?3 and 27 × 10?3 L mol?1s?1, respectively. The dissociation constants of tritylterachloroferate (Kd = 0.88 × 10?4M?1) and tritylhexachloroantimonate (Kd = 2.64 × 10?4M?1) was determined. The effect of electron acceptors and donors on the dissociation equilibrium and initiation rate was investigated. It was shown that in strongly dissociated ion pairs such as stable carbenium salts the electron donors and acceptors have no appreciable effect on the magnitude of the dissociation. The temperature dependence of the rate constants in the ?20–+20°C range yielded the following thermodynamic parameters for trityltetrachloroferate: Ei = 8.54 kcal/mol; A = 3.2 × 104 mol?1s?1; ΔH* = 8 kcal/mol; and S* = ?39.8 eu.  相似文献   

11.
In this paper, the effect of hydrogenation on ring C of flavonols on the affinity for bovine serum albumin was investigated. Two differently substituted B-ring hydroxylation flavonols (myricetin and quercetin) and their dihydrides (dihydromyricetin and dihydroquercetin) were used to study their affinities for BSA by quenching the intrinsic BSA fluorescence in solution. From the spectra, the bimolecular quenching constants, the binding constants, the number of binding sites and the binding distances were calculated. The hydroxylation on ring B and hydrogenation on ring C of flavonols significantly affected the binding/quenching process; in general, the hydroxylation increased the affinity and the hydrogenation decreased the affinity. For myricetin and quercetin, the binding constants (K a) for BSA were 1.84×108 L⋅mol−1 and 3.83×107 L⋅mol−1. For dihydromyricetin, the binding constant was 1.36×104 L⋅mol−1, while dihydroquercetin hardly quenched the BSA intrinsic fluorescence. These results showed that hydrogen bonding and conjugative effects may play an important role in binding of flavonols to BSA. These results also showed that the properties of flavonols are related to their chemical structure.  相似文献   

12.
Kinetics of the free radical polymerization of styrene at 110 °C has been investigated in the presence of C‐phenyl‐Ntert‐butylnitrone (PBN) and 2,2′‐azobis(isobutyronitrile) (AIBN) after prereaction in toluene at 85 °C. The effect of the prereaction time and the PBN/AIBN molar ratio on the in situ formation of nitroxides and alkoxyamines (at 85 °C), and ultimately on the control of the styrene polymerization at 110 °C, has been investigated. As a rule, the styrene radical polymerization is controlled, and the mechanism is one of the classical nitroxide‐mediated polymerization. Only one type of nitroxide (low‐molecular‐mass nitroxide) is formed whatever the prereaction conditions at 85 °C, and the equilibrium constant (K) between active and dormant species is 8.7 × 10?10 mol L?1 at 110 °C. At this temperature, the dissociation rate constant (kd) is 3.7 × 10?3 s?1, the recombination rate constant (kc) is 4.3 × 106 L mol?1 s?1, whereas the activation energy (Ea,diss.), for the dissociation of the alkoxyamine at the chain‐end is ~125 kJ mol?1. Importantly, the propagation rate at 110 °C, which does not change significantly with the prereaction time and the PBN/AIBN molar ratio at 85 °C, is higher than that for the thermal polymerization at 110 °C. This propagation rate directly depends on the equilibrium constant K and on the alkoxyamine and nitroxide concentrations, as well. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1219–1235, 2007  相似文献   

13.
An amorphous, organosoluble, fluorine‐containing polybenzimidazole (PBI) was synthesized from 3,3′‐diaminobenzidine and 2,2‐bis(4‐carboxyphenyl)hexafluoropropane. The polymer was soluble in N‐methylpyrrolidinone and dimethylacetamide and had an inherent viscosity of 2.5 dL/g measured in dimethylacetamide at a concentration of 0.5 g/dL. The 5% weight loss temperature of the polymer was 520 °C. Proton‐conducting PBI membranes were prepared via solution casting and doped with different amounts of phosphoric acid. In the methanol permeability measurement, the PBI membranes showed much better methanol barrier ability than a Nafion membrane. The proton conductivity of the acid‐doped PBI membranes increased with increasing temperatures and concentrations of phosphoric acid in the polymer. The PBI membranes showed higher proton conductivity than a Nafion 117 membrane at high temperatures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4508–4513, 2006  相似文献   

14.
《Electroanalysis》2004,16(20):1690-1696
The electrode mechanism of Mo(VI) reduction was studied under catalytic adsorptive stripping mode by means of square‐wave voltammetry (SWV). Mo(VI) creates a stable surface active complex with mandelic acid. The electrode reaction of Mo(VI)‐mandelic acid system undergoes as one‐electron reduction, exhibiting properties of a surface electrode process. In the presence of chlorate, bromate, and hydrogen peroxide, the electrode reaction is transposed into a catalytic mechanism. The experimental results are compared with the recent theory for surface catalytic reaction, enabling qualitative characterization of the electrode mechanism in the presence of different catalytic agents. Utilizing both the method of “split SW peaks” and “quasireversible maximum” the standard redox rate constant of Mo(VI)‐mandelic acid system was estimates as ks=150±5 s?1. By fitting the experimental and theoretical results, the following catalytic rate constants have been estimated: (8.0±0.5)×104 mol?1 dm3 s?1, (1.0±0.1)×105 mol?1 dm3 s?1, and (3.2±0.1)×106 mol?1 dm3 s?1, for hydrogen peroxide, chlorate, and bromate, respectively.  相似文献   

15.
Precise measurements on the viscosities of the solutions of sodium carboxymethylcellulose in water and in two acetonitrile–water mixtures containing 10 and 20 vol % of acetonitrile have been reported at 35, 40 and 50 °C. Isoionic dilutions were performed with the total ionic strengths of the solutions maintained with sodium chloride at ~4.20 × 10?4 and 1.45 × 10?3 mol dm?3 of NaCl to obtain the intrinsic viscosities. The Huggins constants were also obtained from the experimental results. The influences of the medium, the temperature, and the total ionic strength on the intrinsic viscosities as well as on the Huggins constants have been interpreted from the points of view of the solvodynamic and thermodynamic interactions prevailing in the polyelectrolyte solution under investigation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1765–1770, 2007  相似文献   

16.
A sulfonated derivative of polybenzimidazole is reported, and its properties are analyzed in comparison with related polybenzimidazole proton‐conducting materials. Poly(2,5‐benzimidazole), poly(m‐phenylenebenzobisimidazole), and poly[m‐(5‐sulfo)‐phenylenebenzobisimidazole] were prepared by condensation of the corresponding monomers in polyphosphoric acid. Several adducts of these polymers with phosphoric acid were prepared. The resulting materials were characterized by chemical analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis; also, the dc conductivity of doped and undoped derivatives was measured. Similar to what has been observed for the commercial polybenzimidazole polymer (also examined here for comparison), the title polymers exhibit high thermal stability. Furthermore, their doping with phosphoric acid leads to a significant increase in conductivity from less than 10?11 Scm?1 for the undoped polymers to 10?4 Scm?1 (both at room temperature) for their acid‐loaded derivatives. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3703–3710, 2002  相似文献   

17.
Three new types of hyperbranched photoactive liquid crystalline siloxane polymers containing azo moieties were synthesized using click chemistry methodology. The polymers were soluble in most of the polar solvents like chloroform, tetrahydrofuran, dimethylformamide, dimethyl sulphoxide and dichloromethane. The molecular weights of the polymers were in the range of 9000–12,000 g mol?1. The trans‐cis photoisomerization of the polymer were studied both under UV radiation and dark. The isomerization rate constants were found to be in the range of 0.7–1.4 × 10?2 sec?1 and 7.0 × ?2.5 × 10?5 sec?1. The thermotropic behavior of the polymers was studied by using polarizing optical microscopy and differential scanning calorimetry, respectively. The polymers P1 and P2 showed liquid crystalline texture characteristic of nematic phase. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross‐linked with dichloromethyl phosphinic acid (DCMP). FT‐IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP. The produced cross‐linked membranes show increased mechanical strength, making it possible to achieve higher phosphoric acid doping levels and therefore higher proton conductivity. Oxidative stability is significantly improved and thermal stability is sufficient in a temperature range of up to 250°C, i.e. within the temperature range of operation of PBI‐based fuel cells. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
《Analytical letters》2012,45(20):2521-2536
Abstract

A selective and sensitive spectrophotometric and atomic absorption spectrophotometric method is developed for the determination of traces of mercury with N-phenylcinnamohydroxamic acid (PCHA) in the environment. Mercury is extracted into a chloroform solution of PCHA at pH 8.5-10.0 and determined by AAS. The mercury hydroxamate binary complex is yellow in colour having a maximum absorbance at 390 nm and molar absorptivity 4.3 × 103 1 mol?1 cm?1, sandell sensitivity 0.0466 μg/cm2. The ternary system using 1-(2-pyridylazo)-2-naphthol has molar absorptivity 8.82 × 103 1 mol?1 cm?1 at 550nm, sandell sensitivity 0.0228 μ/cm2. Beer's law is obeyed in the concentration range of 2.37-38.0 ppm and 0.80-19.5 ppm of mercury for binary and ternary system, respectively. The extraction of Hg-PCHA binary system is studied with a liquid cation exchanger, bis-(2-ethyl hexyl) phosphoric acid (HDEHP) and found to have better selectivity than Hg-PCHA-PAN system. The molar absorptivity of the Hg-PCHA-HDEHP system is 8.82 × 103 1 mol?1 cm?1 at 390 nm and Beer's law is obeyed in the concentration range of 0.47-20 ppm of mercury.

The present method is applied to the determination of mercury in eye drops, aurvedic drugs and environmental samples.  相似文献   

20.
The interaction of plumbagin (PLU) with human serum albumin (HSA) in physiological buffer (pH=7.4) was studied by fluorescence spectroscopy. Results obtained from analysis of the fluorescence spectra indicated that PLU has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. Fluorescence quenching data revealed that the quenching constants (K) are 4.43×104, 3.26×104 and 1.69×104 L?mol?1 at 293, 303 and 313 K, respectively. The thermodynamic parameters ΔH° and ΔS° were calculated to be ?36.63 kJ?mol?1, and ?35.702 J?mol?1?K?1 respectively, which suggested that van der Waals interactions and hydrogen bonds play a major role in the interaction of PLU with HSA. The distance between donor (HSA) and acceptor (PLU) was calculated to be 3.76 nm based on Förster’s non-radiative energy transfer theory. The results of synchronous fluorescence spectra showed that binding of PLU to HSA can induce conformational changes in HSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号