首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
In this article, we develop a branch of nonsingular solutions of a Picard multilevel stabilization of mixed finite volume method for the 2D/3D stationary Navier‐Stokes equations without relying on the unique solution condition. The method presented consists of capturing almost all information of initial problem (the nonlinear problems) on the coarsest mesh and then performs one Picard defect correction (the linear problems) on each subsequent mesh based on previous information thus only solving one large linear systems. What is more, the method presented can results in a better coefficient matrix in the model presented with small viscosity. Theoretical results show that the method presented is derived with the convergence rate of the same order as the corresponding finite volume method/finite element method solving the stationary Navier‐Stokes equations on a fine mesh. Therefore, the method presented is definitely more efficient than the standard finite volume method/finite element method. Finally, numerical experiments clearly show the efficiency of the method presented for solving the stationary Navier‐Stokes equations.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 34: 30–50, 2018  相似文献   

2.
The superconvergence for a nonconforming mixed finite element approximation of the Navier–Stokes equations is analyzed in this article. The velocity field is approximated by the constrained nonconforming rotated Q1 (CNRQ1) element, and the pressure is approximated by the piecewise constant functions. Under some regularity assumptions, the superconvergence estimates for both the velocity in broken H1‐norm and the pressure in L2‐norm are obtained. Some numerical examples are presented to demonstrate our theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 646–660, 2016  相似文献   

3.
本文利用齐次定解条件对定常不可压Navier—Stokes方程的非线性项进行处理,给出了相应的一种迎风Galerkin有限元算法;针对这种迎风Galerkin有限元算法,在迎风参数满足一定条件下,利用其三项式具有的一些很好性质,更简单地证明了该问题解的存在唯一性。  相似文献   

4.
This article first recalls the results of a stabilized finite element method based on a local Gauss integration method for the stationary Stokes equations approximated by low equal‐order elements that do not satisfy the inf‐sup condition. Then, we derive general superconvergence results for this stabilized method by using a local coarse mesh L2 projection. These supervergence results have three prominent features. First, they are based on a multiscale method defined for any quasi‐uniform mesh. Second, they are derived on the basis of a large sparse, symmetric positive‐definite system of linear equations for the solution of the stationary Stokes problem. Third, the finite elements used fail to satisfy the inf‐sup condition. This article combines the merits of the new stabilized method with that of the L2 projection method. This projection method is of practical importance in scientific computation. Finally, a series of numerical experiments are presented to check the theoretical results obtained. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 28: 115‐126, 2012  相似文献   

5.
In this article, we propose a two‐level finite element method to analyze the approximate solutions of the stationary Navier‐Stokes equations based on a stabilized local projection. The local projection allows to circumvent the Babuska‐Brezzi condition by using equal‐order finite element pairs. The local projection can be used to stabilize high equal‐order finite element pairs. The proposed method combines the local projection stabilization method and the two‐level method under the assumption of the uniqueness condition. The two‐level method consists of solving a nonlinear equation on the coarse mesh and solving a linear equation on fine mesh. The nonlinear equation is solved by the one‐step Newtonian iteration method. In the rest of this article, we show the error analysis of the lowest equal‐order finite element pair and provide convergence rate of approximate solutions. Furthermore, the numerical illustrations coincide with the theoretical analysis expectations. From the view of computational time, the results show that the two‐level method is effective to solve the stationary Navier‐Stokes equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

6.
Based on two‐grid discretizations, a two‐parameter stabilized finite element method for the steady incompressible Navier–Stokes equations at high Reynolds numbers is presented and studied. In this method, a stabilized Navier–Stokes problem is first solved on a coarse grid, and then a correction is calculated on a fine grid by solving a stabilized linear problem. The stabilization term for the nonlinear Navier–Stokes equations on the coarse grid is based on an elliptic projection, which projects higher‐order finite element interpolants of the velocity into a lower‐order finite element interpolation space. For the linear problem on the fine grid, either the same stabilization approach (with a different stabilization parameter) as that for the coarse grid problem or a completely different stabilization approach could be employed. Error bounds for the discrete solutions are estimated. Algorithmic parameter scalings of the method are also derived. The theoretical results show that, with suitable scalings of the algorithmic parameters, this method can yield an optimal convergence rate. Numerical results are provided to verify the theoretical predictions and demonstrate the effectiveness of the proposed method. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 425–444, 2017  相似文献   

7.
A combination method of the Newton iteration and two‐level finite element algorithm is applied for solving numerically the steady Navier‐Stokes equations under the strong uniqueness condition. This algorithm is motivated by applying the m Newton iterations for solving the Navier‐Stokes problem on a coarse grid and computing the Stokes problem on a fine grid. Then, the uniform stability and convergence with respect to ν of the two‐level Newton iterative solution are analyzed for the large m and small H and h << H. Finally, some numerical tests are made to demonstrate the effectiveness of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

8.
This article proposes and analyzes a multilevel stabilized finite volume method(FVM) for the three‐dimensional stationary Navier–Stokes equations approximated by the lowest equal‐order finite element pairs. The method combines the new stabilized FVM with the multilevel discretization under the assumption of the uniqueness condition. The multilevel stabilized FVM consists of solving the nonlinear problem on the coarsest mesh and then performs one Newton correction step on each subsequent mesh thus only solving one large linear systems. The error analysis shows that the multilevel‐stabilized FVM provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution solving the stationary Navier–Stokes equations on a fine mesh for an appropriate choice of mesh widths: hjhj‐12, j = 1,…,J. Therefore, the multilevel stabilized FVM is more efficient than the standard one‐level‐stabilized FVM. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

9.
This article derives a general superconvergence result for nonconforming finite element approximations of the Stokes problem by using a least‐squares surface fitting method proposed and analyzed recently by Wang for the standard Galerkin method. The superconvergence result is based on some regularity assumption for the Stokes problem and is applicable to any nonconforming stable finite elements with regular but nonuniform partitions. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 143–154, 2002; DOI 10.1002/num.1036  相似文献   

10.
分析了Rd,d=2,3维不可压缩流Stokes问题低次元稳定有限体积方法,它主要利用局部压力投影方法对两种流行但不满足inf-sup条件的有限元配对(P_1-P_0和P_1-P_1)在有限体积方法的框架下进行稳定;利用有限元与有限体积方法的等价性进行有限体积方法理论分析.结果表明不可压缩流Stokes问题在f∈Hd,d=2,3维不可压缩流Stokes问题低次元稳定有限体积方法,它主要利用局部压力投影方法对两种流行但不满足inf-sup条件的有限元配对(P_1-P_0和P_1-P_1)在有限体积方法的框架下进行稳定;利用有限元与有限体积方法的等价性进行有限体积方法理论分析.结果表明不可压缩流Stokes问题在f∈H1情况下,本文方法得到的解与稳定有限元方法解之间具有O(h1情况下,本文方法得到的解与稳定有限元方法解之间具有O(h2)阶超收敛阶结果,且稳定有限体积方法取得了与稳定有限元方法相同的收敛速度,与稳定有限元方法比较,稳定有限体积方法计算简单高效,同时保持物理守恒,因此在实际应用中具有很好的潜力。  相似文献   

11.
Least‐squares mixed finite element schemes are formulated to solve the evolutionary Navier‐Stokes equations and the convergence is analyzed. We recast the Navier‐Stokes equations as a first‐order system by introducing a vorticity flux variable, and show that a least‐squares principle based on L2 norms applied to this system yields optimal discretization error estimates. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 441–453, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10015  相似文献   

12.
In this article we present an analysis of a finite element method for solving two‐dimensional unsteady compressible Navier‐Stokes equations. Under the time‐stepping size restriction Δt ≤ Ch, we prove the existence and uniqueness of the numerical solution and obtain an a prior error estimate uniform in time. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 152–166, 2003  相似文献   

13.
In this article, we give some numerical techniques and error estimates using web‐spline based mesh‐free finite element method for the heat equation and the time‐dependent Navier–Stokes equations on bounded domains. The web‐spline method uses weighted extended B‐splines on a regular grid as basis functions and does not require any grid generation. We demonstrate the method by providing numerical results for the Poisson's and stationary Stokes equation. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

14.
In this article, we develop and analyze a mixed finite element method for the Stokes equations. Our mixed method is based on the pseudostress‐velocity formulation. The pseudostress is approximated by the Raviart‐Thomas (RT) element of index k ≥ 0 and the velocity by piecewise discontinuous polynomials of degree k. It is shown that this pair of finite elements is stable and yields quasi‐optimal accuracy. The indefinite system of linear equations resulting from the discretization is decoupled by the penalty method. The penalized pseudostress system is solved by the H(div) type of multigrid method and the velocity is then calculated explicitly. Alternative preconditioning approaches that do not involve penalizing the system are also discussed. Finally, numerical experiments are presented. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

15.
In this article, we consider the finite element discretization of the Navier‐Stokes problem coupled with convection‐diffusion equations where both the viscosity and the diffusion coefficients depend on the temperature. Existence and uniqueness of a solution are established. We prove a posteriori error estimates.  相似文献   

16.
In this article, we propose and analyze a new decoupled characteristic stabilized finite element method for the time‐dependent Navier–Stokes/Darcy model. The key idea lies in combining the characteristic method with the stabilized finite element method to solve the decoupled model by using the lowest‐order conforming finite element space. In this method, the original model is divided into two parts: one is the nonstationary Navier–Stokes equation, and the other one is the Darcy equation. To deal with the difficulty caused by the trilinear term with nonzero boundary condition, we use the characteristic method. Furthermore, as the lowest‐order finite element pair do not satisfy LBB (Ladyzhen‐Skaya‐Brezzi‐Babuska) condition, we adopt the stabilized technique to overcome this flaw. The stability of the numerical method is first proved, and the optimal error estimates are established. Finally, extensive numerical results are provided to justify the theoretical analysis.  相似文献   

17.
A multilevel finite element method in space‐time for the two‐dimensional nonstationary Navier‐Stokes problem is considered. The method is a multi‐scale method in which the fully nonlinear Navier‐Stokes problem is only solved on a single coarsest space‐time mesh; subsequent approximations are generated on a succession of refined space‐time meshes by solving a linearized Navier‐Stokes problem about the solution on the previous level. The a priori estimates and error analysis are also presented for the J‐level finite element method. We demonstrate theoretically that for an appropriate choice of space and time mesh widths: hjh, kjk, j = 2, …, J, the J‐level finite element method in space‐time provides the same accuracy as the one‐level method in space‐time in which the fully nonlinear Navier‐Stokes problem is solved on a final finest space‐time mesh. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

18.
石东洋  唐启立 《应用数学》2012,25(3):678-684
通过对由经典加罚算法得到的两个解进行线性组合,研究Stokes方程低阶非协调混合元的改进加罚算法.该方法利用较大的罚参数能得到同使用较小参数的经典加罚方法一样的收敛阶.此外,基于单元的特性和插值后处理技巧,得到一些超收敛结果,从而改进以往的文献结果.  相似文献   

19.
Three penalty finite element methods are designed to solve numerically the steady Navier–Stokes equations, where the Stokes, Newton, and Oseen iteration methods are used, respectively. Moreover, the stability analysis and error estimate for these nine algorithms are provided. Finally, the numerical tests confirm the theoretical results of the presented algorithms. Meanwhile, the numerical investigations are provided to show that the proposed methods are efficient for solving the steady Navier–Stokes equations with the different viscosity. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 74‐94, 2014  相似文献   

20.
In this article we analyze a finite element method for three‐dimensional unsteady compressible Navier‐Stokes equations. We prove the existence and uniqueness of the numerical solution, and obtain a priori error estimates uniform in time. Numerical computations are carried out to test the orders of accuracy in the error estimates. Blend function interpolations are applied in the calculation of numerical integrations. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 432–449, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号