首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1,4‐Dibromo‐2‐(bromomethyl)benzene and 1,3‐dibromo‐5‐(bromomethyl)benzene were used as initiators in the atom transfer radical polymerization of styrene in conjunction with CuBr/2,2′‐bipyridine as a catalyst. The resulting polystyrene (PSt)‐based macromonomers, possessing at one end a 2,5‐dibromophenylene or 3,5‐dibromophenylene moiety, were used in combination with 2,5‐dihexylbenzene‐1,4‐diboronic acid for Suzuki coupling in the presence of Pd(PPh3)4 as a catalyst or with the system NiCl2/2,2′‐bipyridine/triphenylphosphine/Zn for Yamamoto polymerization. Polyphenylenes (PPs) with PSt chains as substitution groups were obtained. The same macromonomers were used in Yamamoto copolycondensation reactions, in combination with a poly(ε‐caprolactone) (PCL) macromonomer, and this resulted in PPs with PSt/PCL side chains. The obtained PPs had good solubility properties in common organic solvents at room temperature similar to those of the starting macromonomers. The new polymers were characterized with 1H (13C) NMR, IR, and gel permeation chromatography. The optical properties of the polymers were monitored with UV and fluorescence spectroscopy. The thermal behaviors of the macromonomers and final PPs were investigated with differential scanning calorimetry and compared. The morphology of PPs containing PSt and PCL blocks was characterized with atomic force microscopy, and a microphase‐separated layered morphology was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 879–896, 2005  相似文献   

2.
Well‐defined polystyrene‐ (PSt) or poly(ε‐caprolactone) (PCL)‐based polymers containing mid‐ or end‐chain 2,5 or 3,5‐ dibromobenzene moieties were prepared by controlled polymerization methods, such as atom transfer radical polymerization (ATRP) or ring opening polymerization (ROP). 1,4‐Dibromo‐2‐(bromomethyl)benzene, 1,3‐dibromo‐5‐(bromomethyl)benzene, and 1,4‐dibromo‐2,5‐di(bromomethyl)benzene were used as initiators in ATRP of styrene (St) in conjunction with CuBr/2,2′‐bipyridine as catalyst. 2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene initiated the ROP of ε‐caprolactone (CL) in the presence of stannous octoate (Sn(Oct)2) catalyst. The reaction of these polymers with amino‐ or aldehyde‐functionalized monoboronic acids, in Suzuki‐type couplings, afforded the corresponding telechelics. Further functionalization with oxidable groups such as 2‐pyrrolyl or 1‐naphthyl was attained by condensation reactions of the amino or aldehyde groups with low molecular weight aldehydes or amines, respectively, with the formation of azomethine linkages. Preliminary attempts for the synthesis of fully conjugated poly(Schiff base) with polymeric segments as substituents, by oxidative polymerization of the macromonomers, are presented. All the starting, intermediate, or final polymers were structurally analyzed by spectral methods (1H NMR, 13C NMR, and IR). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 727–743, 2006  相似文献   

3.
Well‐defined in‐chain norbornene‐functionalized poly(ethylene oxide)‐b‐poly(?‐caprolactone) copolymers (NB‐PEO‐b‐PCL) were synthesized from a dual clickable containing both hydroxyl‐ and alkyne‐reactive groups, namely heterofunctional norbornene 3‐exo‐(2‐exo‐(hydroxymethyl)norborn‐5‐enyl)methyl hexynoate. A range of NB‐PEO‐b‐PCL copolymers were obtained using a combination of orthogonal organocatalyzed ring‐opening polymerization (ROP) and click copper‐catalyzed azide–alkyne cycloaddition (CuAAC). Ring‐opening metathesis polymerization (ROMP) of NB‐PEO‐b‐PCL macromonomers using ruthenium‐based Grubbs’ catalysts provides comb‐like and umbrella‐like graft copolymers bearing both PEO and PCL grafts on each monomer unit. Mikto‐arm star A2B2 copolymers were obtained through a new strategy based on thiol–norbornene photoinitiated click chemistry between 1,3‐propanedithiol and NB‐PEO‐b‐PCL. The results demonstrate that in‐chain NB‐PEO‐b‐PCL copolymers can be used as a platform to prepare mikto‐arm star, umbrella‐, and comb‐like graft copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 4051–4061  相似文献   

4.
Novel and well‐defined pyrene‐containing eight‐arm star‐shaped dendrimer‐like copolymers were successfully achieved by combination of esterification, atom transfer radical polymerization (ATRP), divergent reaction, ring‐opening polymerization (ROP), and coupling reaction on the basis of pentaerythritol. The reaction of pentaerythritol with 2‐bromopropionyl bromide permitted ATRP of styrene (St) to form four‐arm star‐shaped polymer (PSt‐Br)4. The molecular weights of these polymers could be adjusted by the variation of monomer conversion. Eight‐hydroxyl star‐shaped polymer (PSt‐(OH)2)4 was produced by the divergent reaction of (PSt‐Br)4 with diethanolamine. (PSt‐(OH)2)4 was used as the initiator for ROP of ε‐caprolactone (CL) to produce eight‐arm star‐shaped dendrimer‐like copolymer (PSt‐b‐(PCL)2)4. The molecular weights of (PSt‐b‐(PCL)2)4 increased linearly with the increase of monomer. After the coupling reaction of hydroxyl‐terminated (PSt‐b‐(PCL)2)4 with 1‐pyrenebutyric acid, pyrene‐containing eight‐arm star‐shaped dendrimer‐like copolymer (PSt‐b‐(PCL‐pyrene)2)4 was obtained. The eight‐arm star‐shaped dendrimer‐like copolymers presented unique thermal properties and crystalline morphologies, which were different from those of linear poly(ε‐caprolactone) (PCL). Fluorescence analysis indicated that (PSt‐b‐(PCL‐pyrene)2)4 presented slightly stronger fluorescence intensity than 1‐pyrenebutyric acid when the pyrene concentration of them was the same. The obtained pyrene‐containing eight‐arm star‐shaped dendrimer‐like copolymer has potential applications in biological fluorescent probe, photodynamic therapy, and optoelectronic devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2788–2798, 2008  相似文献   

5.
A series of well‐defined θ‐shaped copolymers composed of polystyrene (PS) and poly(ε‐caprolactone) (PCL) with controlled molecular weight and narrow molecular weight distribution have been successfully synthesized without any purification procedure by the combination of atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP), and the “click” chemistry. The synthetic process involves two steps: (1) synthesis of AB2 miktoarm star copolymers, which contain one PCL chain terminated with two acetylene groups and two PS chains with two azido groups at their one end, (α,α′‐diacetylene‐PCL) (ω‐azido‐PS)2, by ROP, ATRP, and the terminal group transformation; (2) intramolecular cyclization of AB2 miktoarm star copolymers to produce well‐defined pure θ‐shaped copolymers using “click” chemistry under high dilution. The 1H NMR, FTIR, and gel permeation chromatography techniques were applied to characterize the chemical structures of the resultant intermediates and the target polymers. Their thermal behavior was investigated by DSC. The mobility decrease of PCL chain across PS ring in the theta‐shaped copolymers restricts the crystallization ability of PCL segment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2620–2630, 2009  相似文献   

6.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

7.
A stereoregular 2‐amino‐glycan composed of a mannosamine residue was prepared by ring‐opening polymerization of anhydro sugars. Two different monomers, 1,6‐anhydro‐2‐azido‐mannose derivative ( 3 ) and 1,6‐anhydro‐2‐(N, N‐dibenzylamino)‐mannose derivative ( 6 ), were synthesized and polymerized. Although 3 gave merely oligomers, 6 was promptly polymerized into high polymers of the number‐average molecular weight (Mn) of 2.3 × 104 to 2.9 × 104 with 1,6‐α stereoregularity. The differences of polymerizability of 3 and 6 from those of the corresponding glucose homologs were discussed. It was found that an N‐benzyl group is exceedingly suitable for protecting an amino group in the polymerization of anhydro sugars of a mannosamine type. The simultaneous removal of O‐ and N‐benzyl groups of the resulting polymers was achieved by using sodium in liquid ammonia to produce the first 2‐amino‐glycan, poly‐(1→6)‐α‐D ‐mannosamine, having high molecular weight through ring‐opening polymerization of anhydro sugars.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
An ABC‐type miktoarm star polymer was prepared with a core‐out method via a combination of ring‐opening polymerization (ROP), stable free‐radical polymerization (SFRP), and atom transfer radical polymerization (ATRP). First, ROP of ϵ‐caprolactone was carried out with a miktofunctional initiator, 2‐(2‐bromo‐2‐methyl‐propionyloxymethyl)‐3‐hydroxy‐2‐methyl‐propionic acid 2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yl oxy)‐ethyl ester, at 110 °C. Second, previously obtained poly(ϵ‐caprolactone) (PCL) was used as a macroinitiator for SFRP of styrene at 125 °C. As a third step, this PCL–polystyrene (PSt) precursor with a bromine functionality in the core was used as a macroinitiator for ATRP of tert‐butyl acrylate in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 100 °C. This produced an ABC‐type miktoarm star polymer [PCL–PSt–poly(tert‐butyl acrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.37). The obtained polymers were characterized with gel permeation chromatography and 1H NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4228–4236, 2004  相似文献   

9.
This paper describes the synthesis of a novel monomer of 5‐substituted cyclooctene with the pendant of imidazolium salt (7) and the ring‐opening metathesis polymerization of the functionalized cyclooctenes ( 4 and 7 ) in CH2Cl2 and ionic liquid [bmim][PF6] by a ruthenium‐based catalyst RuCl2(PCy3)(SIMes)(CHPh) (2). The polymerization, which was carried out in ionic liquid, afforded improved control over the molecular weight (Mn) and polydispersity of the resultant products (PDI <1.4). Furthermore, to facilitate the GPC measurement for molecular weight of polymers, the charged polymers (poly‐ 7 ) were hydrolyzed to give uncharged polymers (poly‐ 4 *) by removing the imidazolium pendant from the polymer chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3986–3993, 2007  相似文献   

10.
Double‐hydrophilic in‐chain functionalized macromonomers consisting of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) were prepared by a multistep procedure including esterification of PNIPAM monoester of maleic acid with α‐methoxy‐ω‐hydroxypolyoxyethylene or its amidation with α‐methoxy‐ω‐aminopolyoxyethylene. The polymerization of the macromonomers was carried out in aqueous solutions. The temperature was the key parameter controlling the polymerization process that was performed in the organized domains formed by the macromonomers below and above the phase transition temperature (Ttr). Polymacromonomers with higher degrees of polymerization were prepared at temperatures just below the Ttr. Static light scattering measurements on dilute aqueous solutions of thermally‐responsive macromonomers and their polymerization products demonstrated that they formed aggregates below the Ttr. Supramolecular structures with low density cores, formed by the polymacromonomers at room temperature, were imaged by SEM. Morphological tuning was achieved by varying both the composition of the copolymer and the concentration of the aqueous solution. The rheological behavior of the polymacromonomers in 25 wt % aqueous solution was compared to that of the respective macromonomers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4720–4732, 2007  相似文献   

11.
Well‐defined hetero eight‐shaped copolymers composed of polystyrene (PS) and poly(ε‐caprolactone) (PCL) with controlled molecular weight and narrow molecular weight distribution were successfully synthesized by the combination of ring‐opening polymerization, ATRP, and “click” reaction. The synthetic procedure involves three steps: (1) preparation of a tetrafunctional PS and PCL star copolymer with two PS and two PCL arms using the tetrafunctional initiator bearing two hydroxyl groups and two bromo groups; (2) synthesis of tetrafunctional star copolymer, (α‐acetylene‐PCL)2(ω‐azido‐PS)2, by the transition of terminal hydroxyl and bromo groups to acetylene and azido groups through the reaction with 4‐propargyloxybutanedioyl chloride and NaN3 respectively; (3) intramolecular cyclization reaction to produce the hetero eight‐shaped copolymers using “click” chemistry under high dilution. The 1H NMR, FTIR, and gel permeation chromatography techniques were applied to characterize the chemical structures of the resulted intermediates and the target polymers. Their thermal behavior was investigated by DSC, and their crystallization behaviors of PCL were studied by polarized optical microscopy. The decrease in chain mobility of the eight‐shaped copolymers restricts the crystallization of PCL and the crystallization rate of PCL is slower in comparison with their corresponding star precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6496–6508, 2008  相似文献   

12.
We report the synthesis of linear‐ and brush‐type poly(?‐caprolactone) (PCL) networks and investigate their thermal, mechanical, and shape memory behavior. Brush‐PCLs are prepared by ring‐opening metathesis polymerization (ROMP) of a norbornenyl‐functionalized ?‐caprolactone macromonomer (MM‐PCL) of different molecular weights. The linear analog, diacrylate end‐functionalized PCL (linear‐PCL), having comparable molecular weight of side chain of brush‐PCL is also synthesized. These polymers are thermally cured by a radical initiator in the presence of poly(ethylene glycol) diacrylate crosslinker. Thermal and linear viscoelastic properties as well as shape memory performance of the resulting PCL networks are investigated, and are significantly impacted by the PCL architecture. Therefore, our work highlights that tailoring macromolecular architecture is useful strategy to manipulate thermal, mechanical, and resulting shape memory properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3424–3433  相似文献   

13.
The H‐shaped copolymers, [poly(L ‐lactide)]2polystyrene [poly(L ‐lactide)]2, [(PLLA)2PSt(PLLA)2] have been synthesized by combination of atom transfer radical polymerization (ATRP) with cationic ring‐opening polymerization (CROP). The first step of the synthesis is ATRP of St using α,α′‐dibromo‐p‐xylene/CuBr/2,2′‐bipyridine as initiating system, and then the PSt with two bromine groups at both chain ends (Br–PSt–Br) were transformed to four terminal hydroxyl groups via the reaction of Br–PSt–Br with diethanolamine in N,N‐dimethylformamide. The H‐shaped copolymers were produced by CROP of LLA, using PSt with four terminal hydroxyl groups as macroinitiator and Sn(Oct)2 as catalyst. The copolymers obtained were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2794–2801, 2006  相似文献   

14.
Well‐defined AB3‐type miktoarm star‐shaped polymers with cholic acid (CA) core were fabricated with a combination of “click” chemistry and ring opening polymerization (ROP) methods. Firstly, azide end‐functional poly(ethylene glycol) (mPEG), poly(methyl methacrylate) (PMMA), polystyrene (PS), and poly(ε‐caprolactone) (PCL) polymers were prepared via controlled polymerization and chemical modification methods. Then, CA moieties containing three OH groups were introduced to these polymers as the end groups via Cu(I)‐catalyzed click reaction between azide end‐functional groups of the polymers ( mPEG‐N3 , PMMA‐N3 , PS‐N3 , and PCL‐N3 ) and ethynyl‐functional CA under ambient conditions, yielding CA end‐functional polymers ( mPEG‐Cholic , PMMA‐Cholic , PS‐Cholic , and PCL‐Cholic ). Finally, the obtained CA end‐capped polymers were employed as the macroinitiators in the ROP of ε‐caprolactone (ε‐CL) yielding AB3‐type miktoarm star polymers ( mPEG‐Cholic‐PCL3 , PMMA‐Cholic‐PCL3 , and PS‐Cholic‐PCL3 ) and asymmetric star polymer [ Cholic‐(PCL)4 ]. The chemical structures of the obtained intermediates and polymers were confirmed via Fourier transform infrared and 1H nuclear magnetic resonance spectroscopic techniques. Thermal decomposition behaviors and phase transitions were studied in detail using thermogravimetric analysis and differential scanning calorimetry experiments. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3390–3399  相似文献   

15.
Novel multiarm star copolymers with poly(?‐caprolactone) (PCL) as the arms and hyperbranched polyethylenimine (HPEI) as the core have been successfully prepared by the tin(II) 2‐ethylhexanoate catalyzed ring‐opening polymerization of ?‐caprolactone (CL) with HPEI used directly as a macroinitiator. Not only primary but also secondary amine groups of HPEI participate in initiating the ring‐opening polymerization of CL with almost 100% initiation efficiency. The average degree of polymerization of the PCL arms can be controlled by the feed ratio of the monomers to the initiating sites. Because of the polarity difference of the PCL arms and HPEI core, the obtained multiarm star polymers display an inverted micellar structure with potential extraction and encapsulation of water‐soluble guests. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4165–4173, 2006  相似文献   

16.
A series of well‐defined centipede‐like copolymers with poly(glycidyl methacrylate) (PGMA) as main chain and poly(L ‐lactide) (PLLA) and polystyrene (PSt) as side chains have been synthesized successfully by combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). The synthetic process includes three steps. (1) Synthesis of PGMA via ATRP; (2) preparation of macroinitiator with one bromine group and a hydroxyl group at every GMA unit of PGMA; (3) ring‐opening polymerization of LLA and ATRP of St to obtain the asymmetric centipede‐like copolymers. The number–average degrees of polymerization of PGMA backbone, PLLA and PSt side chains were determined by 1H‐NMR spectra, and the molecular weights of the resultant intermediates and centipede‐like copolymers were measured by gel permeation chromatography. The molecular weight distributions were narrow and the molecular weights of both the backbone and the side chains were controllable. The thermal behavior of the centipede‐like copolymers was investigated by differential scanning calorimeter. With the increase of PSt side chain length, the glass transition temperature of PLLA side chains shifted to high temperature, and crystallization ability of PLLA side chains became poor. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5580–5591, 2008  相似文献   

17.
A monomode microwave reactor was used for the synthesis of designed star‐shaped polymers, which were based on dipentaerythritol with six crystallizable arms of poly(ε‐caprolactone)‐b‐poly(L ‐lactide) (PCL‐b‐PLLA) copolymer via a two‐step ring‐opening polymerization (ROP). The effects of irradiation conditions on the molecular weight were studied. Microwave heating accelerated the ROP of CL and LLA, compared with the conventional heating method. The resultant hexa‐armed polymers were fully characterized by means of FTIR, 1H NMR spectrum, and GPC. The investigation of thermal properties and crystalline behaviors indicated that the crystalline behaviors of polymers were largely depended on the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Through atom transfer radical polymerization of styrene with 1,3‐dibromomethyl‐5‐propargyloxy‐benzene as initiator followed by the conversion of bromine end‐groups into azide end‐groups, well‐defined seesaw‐type polystyrene (PSt) macromonomers with two molecular weights (Mn = 8.0 and 28.0 k) were obtained. Thus, a series of long‐subchain hyperbranched (lsc‐hp) PSt with high overall molar masses and regular subchain lengths were obtained via copper‐catalyzed azide–alkyne cycloaddition click chemistry performed in THF and DMF, respectively. The polycondensation of seesaw‐type macromonomers was monitored by gel permeation chromatography. Because DMF is the reaction medium with higher polarity, click reaction proceeds more easily in DMF. Therefore, the growth of lsc‐hp PSt in DMF has faster rate than that in THF for the shorter seesaw‐type macromonomer (Seesaw‐8k). However, THF is the solvent with better solubility to PSt and leads to looser conformation of PSt chains. Thus, for the longer seesaw macromonomer (Seesaw‐28k), lsc‐hp PSt in THF has higher overall molar mass. As well, the self‐cyclization of seesaw‐type macromonomers also depends on both solvent and molar mass of macromonomer. The self‐cyclization degrees of Seesaw‐8k in DMF and THF are almost the same while that of Seesaw‐28k macromonomer is obviously lower in THF. The experimental results suggest a physical consideration to control the growth of hyperbranched polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
In this contribution, we reported the synthesis of a hyperbranched block copolymer composed of poly(ε‐caprolactone) (PCL) and polystyrene (PS) subchains. Toward this end, we first synthesized an α‐alkynyl‐ and ω,ω′‐diazido‐terminated PCL‐b‐(PS)2 macromonomer via the combination of ring‐opening polymerization and atom transfer radical polymerization. By the use of this AB2 macromonomer, the hyperbranched block copolymer (h‐[PCL‐b‐(PS)2]) was synthesized via a copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition (i.e., click reaction) polymerization. The hyperbranched block copolymer was characterized by means of 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography. Both differential scanning calorimetry and atomic force microscopy showed that the hyperbranched block copolymer was microphase‐separated in bulk. While this hyperbranched block copolymer was incorporated into epoxy, the nanostructured thermosets were successfully obtained; the formation of the nanophases in epoxy followed reaction‐induced microphase separation mechanism as evidenced by atomic force microscopy, small angle X‐ray scattering, and dynamic mechanical thermal analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 368–380  相似文献   

20.
A new synthetic strategy, the combination of living polymerization of ylides and ring‐opening polymerization (ROP), was successfully used to obtain well‐defined polymethylene‐b‐poly(ε‐caprolactone) (PM‐b‐PCL) diblock copolymers. Two hydroxyl‐terminated polymethylenes (PM‐OH, Mn= 1800 g mol?1 (PDI = 1.18) and Mn = 6400 g mol?1 (PDI = 1.14)) were prepared using living polymerization of dimethylsulfoxonium methylides. Then, such polymers were successfully transformed to PM‐b‐PCL diblock copolymers by using stannous octoate as a catalyst for ROP of ε‐caprolactone. The GPC traces and 1H NMR of PM‐b‐PCL diblock copolymers indicated the successful extension of PCL segment (Mn of PM‐b‐PCL = 5200–10,300 g mol?1; PDI = 1.06–1.13). The thermal properties of the double crystalline diblock copolymers were investigated by differential scanning calorimetry (DSC). The results indicated that the incorporation of crystalline segments of PCL chain effectively influence the crystalline process of PM segments. The low‐density polyethylene (LDPE)/PCL and LDPE/polycarbonate (PC) blends were prepared using PM‐b‐PCL as compatibilizer, respectively. The scanning electron microscopy (SEM) observation on the cryofractured surface of such blend polymers indicates that the PM‐b‐PCL diblock copolymers are effective compatibilizers for LDPE/PCL and LDPE/PC blends. Porous films were fabricated via the breath‐figure method using different concentration of PM‐b‐PCL diblock copolymers in CH2Cl2 under a static humid condition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号