首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
利用原子转移自由基聚合(ATRP)技术合成了含不同端基取代基的偶氮苯三臂星形侧链液晶聚合物. 均苯三酚与2-溴异丁酰溴通过酯化反应制备三官能团引发剂, 引发偶氮苯单体6-[4-(4-甲氧基苯基偶氮)酚氧基]己基甲基丙烯酸酯(MMAzo)或6-[4-(4-乙氧基苯基偶氮)酚氧基]己基甲基丙烯酸酯(EMAzo)的ATRP反应. 利用核磁共振氢谱(1H NMR)、凝胶色谱(GPC)、差示扫描量热法(DSC)和偏光显微镜(POM)等手段对星形聚合物进行表征. 星形聚合物的液晶性与相应均聚物相似, 但偶氮苯端基取代基的不同导致星形聚合物的液晶性差别显著. 在紫外/可见光照射下星形聚合物呈现明显的异构化转变.  相似文献   

2.
A three‐arm star azo side‐chain liquid crystalline (LC) homopolymer, poly[6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO), was synthesized by atom transfer radical polymerization (ATRP) method. The polymerization of 6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate proceeded in a controlled/“living” way. A series of three‐arm star LC block copolymers (PMMAZO‐b‐PMMA) were also synthesized. The polymers were characterized by 1H NMR, gel permeation chromatograph, and UV–vis spectra, respectively. The both polymers of PMMAZO and copolymers of PMMAZO‐b‐PMMA exhibited a smetic phase and a nematic phase. As concern to the PMMAZO, the glass‐transition temperature (Tg) and phase‐transition temperature from the smetic to nematic phase and from the nematic to isotropic phase increased with the increase of molecular weight (Mn(GPC)) of PMMAZO. The phase transition temperature of the block copolymers, PMMAZO‐b‐PMMA, with the same PMMA block was similar to that of PMMAZO. However, the Tg of the PMMAZO‐b‐PMMA decreased at low azo content and then increased with the increasing Mn(GPC) when azo content was above 61.3%. With illumination of linearly polarized Kr+ laser beam at modest intensities (35 mW/cm2), significant surface relief gratings formed on PMMAZO films with different molecular weights were observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 777–789, 2008  相似文献   

3.
The effect of the terminal substituent of azobenzene on the properties of ABA triblock copolymers was investigated. For this study, three kinds of azobenzene‐containing monomers with different terminal substituents—6‐[4‐(4‐methoxyphenylazo)phenoxy] hexyl methacrylate, 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate, and 6‐[4‐(4‐nitrophenylazo)phenoxy]hexyl methacrylate—were used to synthesize ABA triblock copolymers PMMAzo25–PEG13–PMMAzo25/PMMAzo12–PEG13–PMMAzo12, PEMAzo14–PEG13–PEMAzo14, and PNMAzo14–PEG13–PNMAzo14, respectively, by atom transfer radical polymerization (PMMAzo is poly{6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate}, PEMAzo is poly{6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate}, and PNMAzo is poly{6‐[4‐(4‐nitrophenylazo)phenoxy]hexyl methacrylate}). These copolymers were characterized with 1H NMR spectroscopy and gel permeation chromatography and exhibited controlled molecular weights and narrow molecular weight distributions. Differential scanning calorimetry and polarizing optical microscopy showed that these copolymers had mesophases. PMMAzo25–PEG13–PMMAzo25 and PMMAzo12–PEG13–PMMAzo12 had a smectic mesophase and a nematic mesophase, whereas both PEMAzo14–PEG13–PEMAzo14 and PNMAzo14–PEG13–PNMAzo14 had a nematic mesophase. This demonstrated that the liquid‐crystalline properties of these copolymers highly depended on the terminal substituent of azobenzene. The photoresponsive behavior of these copolymers was also investigated in tetrahydrofuran solutions, and the influence of the terminal substituents attached to azobenzene was studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5190–5198, 2007  相似文献   

4.
A series of side‐chain liquid‐crystalline (LC) homopolymers of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with different degrees of polymerization were synthesized by atom transfer radical polymerization (ATRP), which were prepared with a wide range of number‐average molecular weights from 5.1 × 103 to 20.6 × 103 with narrow polydispersities of around 1.17. Thermal investigation showed that the homopolymers exhibit two mesophases, a smectic phase, and a nematic phase, and the phase‐transition temperatures of the homopolymers increase clearly with increasing molecular weights. A series of novel LC coil triblock copolymers with narrow polydispersities was synthesized by ATRP, and their thermotropic phase behavior was investigated with differential scanning calorimetry and polarized optical microscopy. The LC coil triblocks were designed to have an LC conformation of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with a wide range of molecular weights from 3.5 × 103 to 1.7 × 104 and the coil conformation of poly(ethylene glycol) (PEG) (number‐average molecular weight: 6000 or 12,000) segment. Their characterization was investigated with 1H NMR, Fourier transform infrared spectra, and gel permeation chromatography. Triblock copolymers exhibited a crystalline phase, a smectic phase, and a nematic phase. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased, and the crystallization of PEG depressed with increasing molecular weight of the LC block. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2854–2864, 2003  相似文献   

5.
The synthesis of 21‐arm methyl methacrylate (MMA) and styrene star polymers is reported. The copper (I)‐mediated living radical polymerization of MMA was carried out with a cyclodextrin‐core‐based initiator with 21 independent discrete initiation sites: heptakis[2,3,6‐tri‐O‐(2‐bromo‐2‐methylpropionyl]‐β‐cyclodextrin. Living polymerization occurred, providing well‐defined 21‐arm star polymers with predicted molecular weights calculated from the initiator concentration and the consumed monomer as well as low polydispersities [e.g., poly(methyl methacrylate) (PMMA), number‐average molecular weight (Mn) = 55,700, polydispersity index (PDI) = 1.07; Mn = 118,000, PDI = 1.06; polystyrene, Mn = 37,100, PDI = 1.15]. Functional methacrylate monomers containing poly(ethylene glycol), a glucose residue, and a tert‐amine group in the side chain were also polymerized in a similar fashion, leading to hydrophilic star polymers, again with good control over the molecular weight and polydispersity (Mn = 15,000, PDI = 1.03; Mn = 36,500, PDI = 1.14; and Mn = 139,000, PDI = 1.09, respectively). When styrene was used as the monomer, it was difficult to obtain well‐defined polystyrene stars at high molecular weights. This was due to the increased occurrence of side reactions such as star–star coupling and thermal (spontaneous) polymerization; however, low‐polydispersity polymers were achieved at relatively low conversions. Furthermore, a star block copolymer consisting of PMMA and poly(butyl methacrylate) was successfully synthesized with a star PMMA as a macroinitiator (Mn = 104,000, PDI = 1.05). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2206–2214, 2001  相似文献   

6.
Side‐chain liquid‐crystalline polymers of 6‐[4‐(4′‐methoxyphenyl)phenoxy]hexyl methacrylate with controlled molecular weights and narrow polydispersities were prepared via reversible addition–fragmentation chain transfer (RAFT) polymerization with 2‐(2‐cyanopropyl) dithiobenzoate as the RAFT agent. Differential scanning calorimetry studies showed that the polymers produced via the RAFT process had a narrower thermal stability range of the liquid‐crystalline mesophase than the polymers formed via conventional free‐radical polymerization. In addition, a chain length dependence of this stability range was found. The generated RAFT polymers displayed optical textures similar to those of polymers produced via conventional free‐radical polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2949–2963, 2003  相似文献   

7.
Two novel and well‐defined polymers, poly[6‐(5‐(diphenylamino)‐2‐((4‐methoxyphenyl)diazenyl)phenoxy)hexyl methacrylate] (PDMMA) and poly[6‐(4‐((3‐ethynylphenyl)diazenyl) phenoxy)hexyl methacrylate] (PDPMMA), which bear triphenylamine (TPA) incorporated to azobenzene either directly (PDMMA) or with an interval (PDPMMA) as pendant groups were successfully prepared via reversible addition‐fragmentation chain transfer polymerization technique. The electrochemical behaviors of PDPMMA and PDMMA were investigated by cyclic voltammograms (CV) measurement. The hole mobilities of the polymer films were determined by fitting the J‐V (current‐voltage) curve into the space‐charge‐limited current method. The influence of photoisomerization of the azobenzene moiety on the behaviors of fluorescence emission, CV and hole mobilities of these two polymers were studied. The fluorescent emission intensities of these two polymers in CH2Cl2 were increased by about 100 times after UV irradiation. The oxidation peak currents (IOX) of the PDMMA and PDPMMA in CH2Cl2 were increased after UV irradiation. The photoisomerization of the azobenzene moiety in PDMMA had significant effect on the electrochemical behavior, compared with that in PDPMMA. The changes of the hole mobility before and after UV irradiation were very small for both polymers. The HOMO energies (EHOMO, HOMO: the highest occupied molecular orbital) of side chain moieties of TPA incorporated with cis‐isomer and trans‐isomer of azobenzene in PDMMA and PDPMMA were obtained by theoretical calculation, which are basically consistent with the experimental results. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A series of organic/inorganic hybrid star‐shaped polymers were synthesized by atom transfer radical polymerization using 3‐(3,5,7,9,11,13,15‐heptacyclohexyl‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxane‐1‐yl)propyl methacrylate (MA‐POSS) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as monomers and octakis(2‐bromo‐2‐methylpropionoxypropyldimethylsiloxy)octasilsesquioxane as an initiator. Star‐shaped polymers with methyl methacrylate (MMA) and PEGMA moieties were also prepared for comparison purposes. Dimensionally stable freestanding film could be obtained from the hybrid star‐shaped polymer containing 26 wt % of MA‐POSS moieties although its glass transition temperature is very low, ?60.9 °C. As a result, the hybrid star‐shaped polymer electrolyte containing lithium bis(trifluoromethanesulfonyl)imide showed ionic conductivities (1.75 × 10?5 S/cm at 30 °C), which were two orders of magnitude higher than those of the star‐shaped polymer electrolyte with MMA moieties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A class of [5,5′]‐diphenyl‐[5,5′]‐dithiophene (PTTP)‐modified methacrylates has been synthesized and free radically polymerized to form graft polymethacrylates with the conducting PTTP segments as pendant side chains. Both the terminal alkyl side chain and spacer between the PTTP segments and polymer backbone could be varied to study fundamental structure–property relationships for this class of materials. Specifically, a group of three different PTTP graft polymethacrylates has been successfully synthesized with the alkyl side chain varying from hexyl to dodecyl. For the dodecyl‐terminated poly(4‐(5′‐(4‐dodecylphenyl)‐[2,2′‐bithiophen]‐5‐yl)phenethyl methacrylate), p(DPTTPEM), a counterpart, poly(4‐(5′‐(4‐dodecylphenyl)‐[2,2′‐bithiophen]‐5‐yl)phenbutyl methacrylate), p(DPTTPBM), where the ethyl spacer was replaced by a butyl group, was synthesized. The experimental results indicated that both the alkyl side chain and spacer significantly affected the reactivity of the PTTP‐modified methacrylates during free radical polymerization as well as the physical properties of the resultant graft polymers including solubility, morphology, and electrochemical and electrical properties. Typical field‐effect mobilities on the order of 10?5 cm2 V?1 s?1 were observed for all the PTTP monomers in air, which was attributed to their crystalline phase as revealed by differential scanning calorimetry and X‐ray diffraction studies. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A variety of well‐defined tetra‐armed star‐shaped poly(N‐substituted p‐benzamide)s, including block poly(p‐benzamide)s with different N‐substituents, and poly(N‐substituted m‐benzamide)s, were synthesized by using porphyrin‐cored tetra‐functional initiator 2 under optimized polymerization conditions. The initiator 2 allowed discrimination of the target star polymer from concomitantly formed linear polymer by‐products by means of GPC with UV detection, and the polymerization conditions were easily optimized for selective synthesis of the star polybenzamides. Star‐shaped poly(p‐benzamide) with tri(ethylene glycol) monomethyl ether (TEG) side chain was selectively obtained by polymerization of phenyl 4‐{2‐[2‐(2‐methoxyethoxy)ethoxy]ethylamino}benzoate ( 1b ′) with 2 at ?10 °C in the case of [ 1b ′]0/[ 2 ]0 = 40 and at 0 °C in the case of [ 1b ′]0/[ 2 ]0 = 80. Star‐shaped poly(p‐benzamide) with 4‐(octyloxy)benzyl (OOB) substituent was obtained only when methyl 4‐[4‐(octyloxy)benzylamino]benzoate ( 1c ) was polymerized at 25 °C at [ 1c ]0/[ 2 ]0 = 20. On the other hand, star‐shaped poly(m‐benzamide)s with N‐butyl, N‐octyl, and N‐TEG side chains were able to be synthesized by polymerization of the corresponding meta‐substituted aminobenzoic acid alkyl ester monomers 3 at 0 °C until the ratio of [ 3 ]0/[ 2 ]0 reached 80. However, star‐shaped poly(m‐benzamide)s with the OOB group were contaminated with linear polymer even when the feed ratio of the monomer 3d to 2 was 20. The UV–visible spectrum of an aqueous solution of star‐shaped poly(p‐benzamide) with TEG side chain indicated that the hydrophobic porphyrin core was aggregated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

13.
A novel optically active monomer, 6‐{4‐[4‐(1‐phenyl‐1H‐tetrazol‐5‐yloxy)‐phenylazo] ‐phenoxy}‐hexyl methacrylate (PTPPHMA) bearing tetrazole and azobenzol moieties, was synthesized and polymerized by reversible addition‐fragmentation chain transfer (RAFT) polymerization using 2‐cyanoprop‐2‐yl dithiobenzoate (CPDB) as the RAFT agent and 2, 2′‐azobis(isobutyronitrile) (AIBN) as the initiator. Well‐defined optically active photochromic polyPTPPHMA(PPTPPHMA) was obtained. “Living”/controlled characteristics were observed in the polymerization: well‐controlled molecular weights (Mns), narrow molecular weight distributions (Mw/Mn) of the polymers and successful chain‐extension of PPTPPHMA with styrene (St) as the second monomer. The photochemical interconversion between trans and cis isomers of PPTPPHMA in N,N′‐dimethyl formamide (DMF) solution was explored under irradiation of ultraviolet light. The photoinduced birefringence on the thin films of PPTPPHMA was investigated. A maximum birefringence of 0.1 was obtained, and no significant change of profiles of the birefringence after several cycles of writing/erasing/rewriting sequences was observed. The surface‐relief‐gratings (SRGs) were induced on the polymer films by interference of Kr+ laser beams at 413.1 nm with 35 mW/cm2 intensity, the diffraction efficiencies from SRGs were measured to be in the range of 2.0–2.5%. The atomic force microscopy (AFM) results showed the gratings produced on the surfaces of the polymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 682–691, 2008  相似文献   

14.
AB_2型星形杂臂偶氮液晶聚合物的合成及表征   总被引:1,自引:1,他引:1  
通过原子转移自由基聚合(ATRP)与ATRP衍生物化学修饰结合的方法,合成了一系列AB2型星形杂臂偶氮液晶聚合物.其中,A为聚苯乙烯,B为聚6-[4-(4′-甲氧基苯基)偶氮苯氧基己酯](PMMAZO).合成分三步进行.首先,以ATRP方法得到ω-溴聚苯乙烯活性链PS(Br).然后对PS(Br)进行化学改性,得到带两个末端溴原子的聚苯乙烯活性链PS(Br)2·最后,以PS(Br)2作为双官能团大分子引发剂,引发6-[4-(4′-甲氧基苯基)偶氮苯氧基]己酯(MMAZO)发生ATRP聚合,得到星形杂臂PS(PMMAZO)2聚合物.进一步对聚合产物进行了GPC和1H-NMR分析.结果表明合成产物是预期的星形杂臂聚合物,产物分子量可控且分子量分布狭窄.同时,以DSC和POM表征了星形杂臂聚合物的液晶性.  相似文献   

15.
A mesogen‐jacketed liquid crystalline polymer (MJLCP) containing triphenylene (Tp) moieties in the side chains with 12 methylene units as spacers (denoted as PP12V) was synthesized. Its liquid crystalline (LC) phase behavior was studied with a combination of solution 1H NMR, solid‐state NMR, gel permeation chromatography, thermogravimetric analysis, polarized light microscopy, differential scanning calorimetry, and one‐ and two‐dimensional wide‐angle X‐ray diffraction. By simply varying the temperature, two ordered nanostructures at sub‐10‐nm length scales originating from two LC building blocks were obtained in one polymer. The low‐temperature phase of the polymer is a hexagonal columnar phase (ΦH, a = 2.06 nm) self‐organized by Tp discotic mesogens. The high‐temperature phase is a nematic columnar phase with a larger dimension (a′ = 4.07 nm) developed by the rod‐like supramolecular mesogen—the MJLCP chain as a whole. A re‐entrant isotropic phase is found in the medium temperature range. Partially homeotropic alignment of the polymer can be achieved when treated with an electric field, with the polymer in the ΦH phase developed by the Tp moieties. The incorporation of Tp moieties through relatively long spacers (12 methylene units) disrupts the ordered packing of the MJLCP at low temperatures, which is the first case for main‐chain/side‐chain combined LC polymers with MJLCPs as the main‐chain LC building block to the best of our knowledge. The relationship of the molecular structure and the novel phase behavior of PP12V has implications in the design of LC polymers containing nanobuilding blocks toward constructing ordered nanostructures at different length scales. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 295–304  相似文献   

16.
Poly(N‐vinylcaprolactam) (PNVCL) star‐shaped polymers with four arms and carboxyl end groups were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization of N‐vinylcaprolactam (NVCL) employing a tetrafunctional trithiocarbonate as an R‐RAFT agent. The resulting star polymers were characterized using 1H NMR, FT‐IR, gel permeation chromatography (GPC), and UV–vis. Molecular weight of star polymers were analyzed by GPC and UV–vis being observed that the values obtained were very similar. Furthermore, the thermosensitive behavior of the star polymers was studied in aqueous solution by measuring the lower critical solution temperature by dynamic light scattering. Star‐shaped PNVCL were chain extended with ethyl‐hexyl acrylate (EHA) to yield star PNVCL‐b‐PEHA copolymers with an EHA molar content between 4% and 6% proving the living character of the star‐shaped macroCTA. These star block copolymers form aggregates in aqueous solutions with a hydrodynamic diameter ranged from 170 to 225 nm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2156–2165  相似文献   

17.
Nonlinear optical (NLO) rigid main‐chain polyesters containing azobenzene mesogens with high thermal and temporal stabilities were synthesized from derivatives of hydroxyphenylazobenzoic acid. The NLO properties of the homopolymer, poly[4‐(4‐hydroxy‐3‐methyl phenyl)azo]benzoic acid, and copolymers of 4‐[(4‐hydroxy‐3‐methylphenyl)azo]benzoic acid, 4‐[(4‐hydroxy‐2‐methylphenyl)azo]benzoic acid, and 4‐[(4‐hydroxy‐2‐pentadecyl phenyl)azo]benzoic acid (PSCpHBA) with p‐HBA were measured by the Maker fringe technique. The thermal and liquid‐crystalline (LC) phase behaviors of the polymers were examined by differential scanning calorimetry, a thermal‐stimulated polarization current, and polarized light microscopy. The polymers except PSCpHBA exhibited nematic‐threaded and Schlieren textures. The LC orientations give rise to an enhanced NLO response. The polymers had high thermal and temporal stabilities for second‐harmonic generation activity because of their rigid aromatic backbone. This study suggests that the rigid aromatic main chain exhibiting an LC phase is a promising simple method to synthesize highly stable NLO polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1527–1535, 2003  相似文献   

18.
“Three‐arm star” poly[11‐(4′‐cyanophenyl‐4′′‐phenoxy)undecyl acrylate]s were synthesized by atom transfer radical polymerization (ATRP) of 11‐(4′‐cyanophenyl‐4′′‐phenoxy)undecyl acrylate using two new trifunctional initiators: 1,3,5‐tri‐ (methyl 2‐bromopropionate)benzene and 2,4,6‐tri[4′‐methyl(2′′‐bromopropionate)phenoxymethyl]mesitylene. The polymers synthesized with 1,3,5‐tri(methyl 2‐bromopropionate)benzene (series II) contained 14–127 repeat units according to gel permeation chromatography relative to linear polystyrene (GPCPSt) and 13–271 repeat units according to GPC with a light scattering detector (GPCLS). Those synthesized with 2,4,6‐tri[4′‐methyl(2′′‐bromopropionate)phenoxymethyl]mesitylene (series III) contained 14–87 repeat units according to GPCPSt and 10–120 repeat units according to GPCLS. The absolute molecular weight, size, and shape of both series of polymers were characterized by light scattering in CH2Cl2, and their thermotropic behavior was analyzed using differential scanning calorimetry; both types of properties were compared to those of the other architectures, especially the corresponding three‐arm star poly[11‐(4′‐cyanophenyl‐4′′‐phenoxy)undecyl acrylate]s synthesized previously using 1,3,5‐trisbromomethylmesitylene as the initiator. The size and shape of the three‐arm star polymers in CH2Cl2 are similar, although the isotropization temperature in the solid state decreases and the breadth of the isotropization transition increases with increasing size and flexibility of the trifunctional core. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4363–4382, 2008  相似文献   

19.
Well‐defined azobenzene‐containing side‐chain liquid crystalline diblock copolymers composed of poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl methacrylate] (PMMAZO) and poly(γ‐benzyl‐L ‐glutamate) (PBLG) were synthesized by click reaction from alkyne‐ and azide‐functionalized homopolymers. The alkyne‐terminated PMMAZO homopolymers were synthesized by copper‐mediated atom transfer radical polymerization with a bromine‐containing alkyne bifunctional initiator, and the azido‐terminated PBLG homopolymers were synthesized by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride in DMF at room temperature using an amine‐containing azide initiator. The thermotropic phase behavior of PMMAZO‐b‐PBLG diblock copolymers in bulk were investigated using differential scanning calorimetry and polarized light microscopy. The PMMAZO‐b‐PBLG diblock copolymers exhibited a smectic phase and a nematic phase when the weight fraction of PMMAZO block was more than 50%. Photoisomerization behavior of PMMAZO‐b‐PBLG diblock copolymers and the corresponding PMMAZO homopolymers in solid film and in solution were investigated using UV–vis. In solution, trans–cis isomerization of diblock copolymers was slower than that of the corresponding PMMAZO homopolymers. These results may provide guidelines for the design of effective photoresponsive anisotropic materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
Novel star‐shaped hard–soft triblock copolymers, 4‐arm poly(styrene)‐block‐poly [poly(ethylene glycol) methyl ethyl methacrylate]‐block‐poly{x‐[(4‐cyano‐4′‐biphenyl) oxy] alkyl methacrylate} (4PS‐PPEGMA‐PMAxLC) (x = 3, 10), with different mesogen spacer length are prepared by atom‐transfer radical polymerization. The star copolymers comprised three different parts: a hard polystyrene (PS) core to ensure the good mechanical property of the solid‐state polymer, and a soft, mobile poly[poly(ethylene glycol) methyl ethyl methacrylate] (PPEGMA) middle sphere responsible for the high ionic conductivity of the solid polyelectrolytes, and a poly{x‐[(4‐cyano‐4′‐biphenyl)oxy]alkyl methacrylate} with a birefringent mesogens at the end of each arm to tuning the electrolytes morphology. The star‐shaped hard–soft block copolymers fusing hard PS core with soft PPEGMA segment can form a flexible and transparent film with dimensional stability. Thermal annealing from the liquid crystalline states allows the cyanobiphenyl mesogens to induce a good assembly of hard and soft blocks, consequently obtaining uniform nanoscale microphase separation morphology, and the longer spacer is more helpful than the shorter one. There the ionic conductivity has been improved greatly by the orderly continuous channel for efficient ion transportation, especially at the elevated temperature. The copolymer 4PS‐PPEGMA‐PMA10LC shows ionic conductivity value of 1.3 × 10?4 S cm?1 (25 °C) after annealed from liquid crystal state, which is higher than that of 4PS‐PPEGMA electrolyte without mesogen groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4341–4350  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号