首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxidation of N-methylethylamine by bis(hydrogenperiodato)argentate(III) ([Ag(HIO6)2]5−) in alkaline medium results in demethylation, giving rise to formaldehyde and ethylamine as the oxidation products. The oxidation kinetics has been followed spectrophotometrically in the temperature range of 20.0–35.0 °C, and shows an overall second-order character: being first-order with respect to both Ag(III) and N-methylethylamine. The observed second-order rate constants k′ increase with increasing [OH] of the reaction medium, but decrease with increasing the total concentration of periodate. An empirical rate expression for k′ has been derived as: k′ = (k a + k b[OH])K 1/{f([OH])[IO4 ]tot + K 1}, where k a and k b are rate parameters, and K 1 is an equilibrium constant. These parameters have been evaluated at all the temperatures studied, enabling calculation of activation parameters. A reaction mechanism is suggested to involve two pre-equilibria, leading to formation of an intermediate Ag(III) complex, namely [Ag(HIO6)(OH)(MeNHEt)]2−. In the subsequent rate-determining steps, this intermediate undergoes inner-sphere electron transfer from the coordinated amine to the metal center via two distinct routes, one of which is spontaneous while the other is mediated by a hydroxide ion.  相似文献   

2.
The oxidation of N,N-dimethylethanolamine (DMEA) by bis(hydrogenperiodato) argentate(III) ([Ag(HIO6)2]5−) was studied in aqueous alkaline medium. Formaldehyde and dimethylamine were identified as the major oxidation products after the oxidation of DMEA. The oxidation kinetics was followed spectrophotometrically in the temperature range of 25.0 °C–40.0 °C. It was found that the reaction was first order in [Ag(III)]; the oberved first-order rate constants k obsd as functions of [DMEA], [OH] and total concentration of periodate ([IO4-]tot[\mathrm{IO}_{4}^{-}]_{\mathrm{tot}}) were analyzed and were revealed to follow a rate expression: kobsd = (k1 +k2[OH-])K1K2[DMEA]/{f([OH-])[IO4-]tot+ K1 + K1K2[DMEA]}k_{\mathrm{obsd}} = (k_{1} +k_{2}[\mathrm{OH}^{-}])K_{1}K_{2}[\mathrm{DMEA}]/\{f([\mathrm{OH}^{-}])[\mathrm{IO}_{4}^{-}]_{\mathrm{tot}}+ K_{1} + K_{1}K_{2}[\mathrm{DMEA}]\}. Rate constants k 1 and k 2 and equilibrium constant K 2 were derived; activation parameters corresponding to k 1 and k 2 were computed. In the proposed reaction mechanism, a peridato-Ag(III)-DMEA ternary complex is formed indirectly through a reactive intermediate species [Ag(HIO6)(OH)(H2O)]2−. In subsequent rate-determining steps as described by k 1 and k 2, the ternary complex decays to Ag(I) through two reaction pathways: one of which is spontaneous and the other is prompted by an OH.  相似文献   

3.
The kinetics of oxidation of phenyldiethanolamine (PEA) by a silver(III) complex anion, [Ag(HIO6)2]5−, has been studied in an aqueous alkaline medium by conventional spectrophotometry. The main oxidation product of PEA has been identified as formaldehyde. In the temperature range 20.0–40.0 °C , through analyzing influences of [OH] and [IO 4 ]tot on the reaction, it is pseudo-first-order in Ag(III) disappearance with a rate expression: k obsd = (k 1 + k 2[OH]) K 1 K 2[PEA]/{f([OH])[IO 4 ]tot + K 1 + K 1 K 2 [PEA]}, where k 1 = (0.61 ± 0.02) × 10−2 s−1, k2 = (0.049 ± 0.002) M−1 s−1 at 25.0 °C and ionic strength of 0.30 M. Activation parameters associated with k 1 and k 2 have also been derived. A reaction mechanism is proposed involving two pre-equilibria, leading to formation of an Ag(III)-periodato-PEA ternary complex. The ternary complex undergoes a two-electron transfer from the coordination PEA to the metal center via two parallel pathways: one pathway is spontaneous and the other is assisted by a hydroxide ion.  相似文献   

4.
L-脯氨酸独有的亚胺基使其在生物医药领域具有许多独特的功能,并广泛用作不对称有机化合物合成的有效催化剂。本文在碱性介质中研究了二(氢过碘酸)合银(III)配离子氧化 L-脯氨酸的反应。经质谱鉴定,脯氨酸氧化后的产物为脯氨酸脱羧生成的 γ-氨基丁酸盐;氧化反应对脯氨酸及Ag(III) 均为一级;二级速率常数 k′ 随 [IO4-] 浓度增加而减小,而与 [OHˉ] 的浓度几乎无关;推测反应机理应包括 [Ag(HIO6)2]5-与 [Ag(HIO6)(H2O)(OH)]2-之间的前期平衡,两种Ag(III)配离子均作为反应的活性组分,在速控步被完全去质子化的脯氨酸平行地还原,两速控步对应的活化参数为: k1 (25 oC)=1.87±0.04(mol·L-1)-1s-1,∆ H1=45±4 kJ · mol-1, ∆ S1=-90±13 J· K-1·mol-1 and k2 (25 oC) =3.2±0.5(mol·L-1)-1s-1, ∆ H2=34±2 kJ · mol-1, ∆ S2=-122 ±10 J· K-1·mol-1。本文第一次发现 [Ag(HIO6)2]5-配离子也具有氧化反应活性。  相似文献   

5.
Oxidation of 3-(4-methoxyphenoxy)-1,2-propanediol (MPPD) by bis(hydrogenperiodato) argentate(III) complex anion, [Ag(HIO6)2]5− has been studied in aqueous alkaline medium by use of conventional spectrophotometry. The major oxidation product of MPPD has been identified as 3-(4-methoxyphenoxy)-2-ketone-1-propanol by mass spectrometry. The reaction shows overall second-order kinetics, being first-order in both [Ag(III)] and [MPPD]. The effects of [OH] and periodate concentration on the observed second-order rate constants k′ have been analyzed, and accordingly an empirical expression has been deduced:
where [IO4 ]tot denotes the total concentration of periodate and k a = (0.19 ± 0.04) M−1 s−1, k b = (10.5 ± 0.3) M−2 s−1, and K 1 = (5.0 ± 0.8) × 10−4 M at 25.0 °C and ionic strength of 0.30 M. Activation parameters associated with k a and k b have been calculated. A mechanism is proposed, involving two pre-equilibria, leading to formation of a periodato–Ag(III)–MPPD complex. In the subsequent rate-determining steps, this complex undergoes inner-sphere electron-transfer from the coordinated MPPD molecule to the metal center by two paths: one path is independent of OH, while the other is facilitated by a hydroxide ion.  相似文献   

6.
The kinetics of oxidation of triethanolamine (TEA) by diperiodatoargenate(III) anion, [Ag(HIO6)2]5?, has been studied in aqueous alkaline medium by conventional spectrophotometry. The reaction is pseudo-first-order in [Ag(III)] disappearance with kobs = (k1 + k2[OH?]) K1K2[TEA]/{[H2IO63?]e + K1 + K1K2[TEA]}, where k1 = 8.05 × 10?3 S?1, k2 = 0.46 M?1 S?1, K1 = 6.15 × 10?4 M, and K2 = 537 M?1 at 25°C, and μ = 0.30 M. Based on the inference that an inner-sphere complex is formed by indirect replacement of a ligand of [Ag(HIO6)2]5? by a TEA molecule, a reaction mechanism has been proposed. The complex undergoes redox by two modes, both internal and one hydroxide ion assisted.  相似文献   

7.
The kinetics of oxidation of cis‐[CrIII(phen)2(H2O)2]3+ (phen = 1,10‐phenanthro‐ line) by IO4? has been studied in aqueous acidic solutions. In the presence of a vast excess of [IO4?], the reaction is first order in the chromium(III) complex concentration. The pseudo‐first‐order rate constant, kobs, showed a very small change with increasing [IO4?]. The dependence of kobs on [IO4?] is consistent with Eq. (i). (i) The pseudo‐first‐order rate constant, kobs, increased with increasing pH, indicating that the hydroxo form of the chromium(III) complex is the reactive species. An inner‐sphere mechanism has been proposed for the oxidation process. The thermodynamic activation parameters of the processes involved are also reported. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 563–568, 2011  相似文献   

8.
The kinetics of oxidation of the chromium(III)‐guanosine 5‐monophosphate complex, [CrIII(L)(H2O)4]3+(L = guanosine 5‐monophosphate) by periodate in aqueous solution to CrVI have been studied spectrophotometrically over the 25–45 °C range. The reaction is first order with respect to both [IO4?] and [CrIII], and increases with pH over the 2.38–3.68 range. Thermodynamic activation parameters have been calculated. It is proposed that electron transfer proceeds through an inner‐sphere mechanism via coordination of IO4? to chromium(III).  相似文献   

9.
The kinetics of oxidation of pyrrolidine by bis(hydrogenperiodato)argentate(III) complex anion ([Ag(HIO6)2]5?) was studied in alkaline medium, with reaction temperatures in the range of 15.0–30.0 °C. The experiments indicated that the oxidation follows an overall second-order reaction, being first-order in both Ag(III) and pyrrolidine. The observed second-order rate constants, k′, decreased with increasing [IO4 ?] but increased slightly with increasing [OH?]. The influence of ionic strength on the reaction rate was also investigated. The oxidation resulted in oxidative deamination of pyrrolidine, giving 4-hydroxybutyrate as the product. A reaction mechanism is proposed which includes an equilibrium between [Ag(HIO6)2]5? and [Ag(HIO6)2(OH)(H2O)]2?; these two Ag(III) species are reduced by pyrrolidine in parallel rate-determining steps. The rate equation derived from the proposed mechanism can explain the experimental observations. The rate constants of the rate-determining steps, together with the associated activation parameters, were calculated accordingly.  相似文献   

10.
碱性介质中, 在离子强度不变的条件下, 用广度法研究了三价银配合物氧化1,4-丁二胺的动力学及机理. 反应对三价银配合物和都是一级反应, 二级反应速率常数(k’) 随碱浓度的增大而增大,随糕碘酸根离子浓度的增大而减小. 据此提出了适合此反应的反应机理, 并计算得到了反应的热力学参数.  相似文献   

11.
The kinetics of oxidation of L-valine by a copper(III) periodate complex was studied spectrophotometrically. The inverse second-order dependency on [OH] was due to the formation of the protonated diperiodatocuprate(III) complex ([Cu(H3IO6)2]) from [Cu(H2IO6)2]3−. The retarding effect of initially added periodate suggests that the dissociation of copper(III) periodate complex occurs in a pre-equilibrium step in which it loses one periodate ligand. Among the various forms of copper(III) periodate complex occurring in alkaline solutions, the monoperiodatocuprate(III) appears to be the active form of copper(III) periodate complex. The observed second-order dependency of [L-valine] on the rate of reaction appears to result from formation of a complex with monoperiodatocuprate(III) followed by oxidation in a slow step. A suitable mechanism consistent with experimental results was proposed. The rate law was derived as:
- \fracd[DPC]dt = \frackK1K2K3[Cu(H2IO6)2]f3- [L -Val]f2[H3IO62 -]f[OH - ]f2.- \frac{\mathrm{d}[\mathrm{DPC}]}{\mathrm{d}t} =\frac{kK_{1}K_{2}K_{3}[\mathrm{Cu}(\mathrm{H}_{2}\mathrm{IO}_{6})_{2}]_{\mathrm{f}}^{3-} [\mathrm{L} -\mathrm{Val}]_{\mathrm{f}}^{2}}{[\mathrm{H}_{3}\mathrm{IO}_{6}^{2 -}]_{\mathrm{f}}[\mathrm{OH}^{ -} ]_{\mathrm{f}}^{2}}.  相似文献   

12.
The kinetics of oxidation of sarcosine by diperiodatocuprate(III) (DPC) was studied with spectrophotometry in a temperature range of 292.2–304.2 K. The reaction between diperiodatocuprate(III) and sarcosine in alkaline medium exhibits 1:1 stoichiometry (DPC:sarcosine). The reaction was found to be first order with respect to both DPC and sarcosine. The observed rate constant (kobs) decreased with the increase of the [IO?4], decreased with the increase of the [OH?], and then increased with the increase of the [OH?] after a turning point. There was no salt effect, and free radicals were detected. Based on the experimental results, a mechanism involving the diperiodatocuprate(III) (DPC) as the reactive species of the oxidant has been proposed. The activation parameters, as well as the rate constants of the rate‐determining step, have been calculated.  相似文献   

13.
The oxidation of ethylenediamine by diperiodatoargentate (III) ion has been studied by stopped‐flow spectrophotometry. Kinetics of this reaction involves two steps. The first step is the complexation of silver (III) with the substrate and is over in about 10 ms. This is followed by a redox reaction in the second step that occurs intramolecularly from the substrate to the silver (III) center. The rate of reduction of silver (III) species by ethylenediamine, ethanolamine, and 1,2‐ethanediol were observed to be 1.2 × 104, 1.1 × 102, and 0.14 dm3 mol−1 s−1, respectively, at 20°C. The reaction rate shows an inverse dependence on [IO] and [OH] in the low concentration range (≤1 × 10‐3 mol dm−3). At higher [OH] (>1 × 10−3 mol dm−3) the rate of reaction starts increasing and attains a limiting value at very high [OH]. The rate of deamination of ethylenediamine is enhanced by its complexation with silver (III). The involvement of [AgIII(H2IO6) (H2O)2] and [AgIII(H2IO6) (OH)2]2− are suggested as the reactive silver (III) species kinetically in mild basic and basic conditions, respectively. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 286–293, 2000  相似文献   

14.
Properties indirectly determined, or alluded to, in previous publications on the titled isomers have been measured, and the results generally support the earlier conclusions. Thus, the common five‐coordinate intermediate generated in the OH?‐catalyzed hydrolysis of exo‐ and endo‐[Co(dien)(dapo)X]2+ (X=Cl, ONO2) has the same properties as that generated in the rapid spontaneous loss of OH? from exo‐ and endo‐[Co(dien)(dapo)OH]2+ (40±2% endo‐OH, 60±2% exo‐OH) and an unusually large capacity for capturing (R=[CoN3]/[CoOH][]=1.3; exo‐[CoN3]/endo‐[CoN3]=2.1±0.1). Solvent exchange for spontaneous loss of OH? from exo‐[Co(dien)(dapo)OH]2+ has been measured at 0.04 s?1 (k1, 0.50M NaClO4, 25°) from which similar loss from the endo‐OH isomer may be calculated as 0.24 s?1 (k2). The OH?‐catalyzed reactions of exo‐ and endo‐[Co(dien)(dapo)N3]2+ result in both hydrolysis of coordinated via an OH?‐limiting process =153 M ?1 s?1; =295 M ?1 s?1; KH=1.3±0.1 M ?1; 0.50M NaClO4, 25.0°) and direct epimerization between the two reactants =33 M ?1 s?1; =110 M ?1 s?1; 1.0M NaClO4, 25.0°). Comparisons are made with other rapidly reacting CoIII‐acido systems.  相似文献   

15.
An analysis of the former works devoted to the reactions of I(III) in acidic nonbuffered solutions gives new thermodynamic and kinetic information. At low iodide concentrations, the rate law of the reaction IO + I? + 2H+ ? IO2H + IOH is k+B [IO][I?][H+]2k?B [IO2H][IOH] with k+B = 4.5 × 103 M?3s?1 and k?B = 240 M?1s?1 at 25°C and zero ionic strength. The rate law of the reaction IO2H + I? + H+ ? 2IOH is k+C [IO2H][I?][H+] – k?C [IOH]2 with k+C = 1.9 × 1010 M?2s?1 and k?C = 25 M?1s?1. These values lead to a Gibbs free energy of IO2H formation of ?95 kJ mol?1. The pKa of iodous acid should be about 6, leading to a Gibbs free energy of IO formation of about ?61 kJ mol?1. Estimations of the four rate constants at 50°C give, respectively, 1.2 × 104 M?3s?1, 590 M?1s?1, 2 × 109 M?2s?1, and 20 M?1 s?1. Mechanisms of these reactions involving the protonation IO2H + H+ ? IO2H and an explanation of the decrease of the last two rate constants when the temperature increases, are proposed. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 647–652, 2008  相似文献   

16.
A three‐dimensional cyano‐bridged copper(II) complex, [Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2] ( 1 ) (dien = diethylenetriamine), has been prepared and characterized by X‐ray crystallography. Complex 1 crystallized in the monoclinic space group P21/n with a = 6.988(2), b = 17.615(6), c = 12.564(4) Å, β = 90.790(5)°. The crystal consists of cis‐[Cu(dien)]2+ units bridged by [Ag(CN)2] to form a zig‐zag chain. The Ag atoms of the free and bridging [Ag(CN)2] link together to form additional infinite zig‐zag chains with short Ag···Ag distances. The presence of Ag···Ag interactions effectively increases the dimensionality from a 1‐D chain to a 3‐D coordination polymer.  相似文献   

17.
The oxidation of hexacyanoferrate(II) by periodate ion has been studied spectrophotometrically by registering an increase in absorbance at 420 nm (λmax of yellow colored [Fe(CN)6 3?] complex under pseudo first-order conditions by taking excess of [IO4 ?] over [Fe(CN)6 4?]. The reaction conditions were: pH = 9.5 ± 0.02, I = 0.1 M (NaCl) and Temp. = 25 ± 0.1 °C. The reaction exhibited first-order dependence on each [IO4 ?] and [Fe(CN)6 4?]. The effects of variations of pH, ionic strength and temperature were also studied. The experimental observations revealed that the periodate ion exists in its protonated forms viz. [H2IO6]3? and [H3IO6]2? while [Fe(CN)6]4? is present in its deprotonated form throughout the pH region selected for the present study. It has also been observed that deprotonated form of [Fe(CN)6 4?] and protonated forms of periodate ion are the most reactive species towards oxidation of [Fe(CN)6 4?]. The repetitive spectral scan is provided as an evidence to prove the conversion of [Fe(CN)6 4?] to [Fe(CN)6 3?] in the present reaction. The activation parameters have also been computed using the Eyring’s plot and found to be, ΔH? = 51.53 ± 0.06 kJ mol?1, ΔS? = ?97.12 ± 1.57 J K?1 mol?1 and provided in support of a most plausible mechanistic scheme for the reaction under study.  相似文献   

18.
The nature of the diperiodatocuprate(III) (DPC) species present in aqueous alkaline medium has been investigated by a kinetic and mechanistic study on the oxidation of iodide by DPC. The reaction kinetics were studied over the 1.0 × 10–3–0.1 mol dm–3 alkali range. The reaction order with respect to DPC, as well as iodide, was found to be unity when [DPC] [I]. In the 1.0 × 10–3–1.0 × 10–2 mol dm–3 alkali region, the rate decreased with increase in the alkali concentration and a plot of the pseudo-first order rate constant, k versus 1/[OH] was linear. Above 5.0 × 10–2 mol dm–3, a plot of k versus [OH] was also linear with a non-zero intercept. An increase in ionic strength of the reaction mixtures showed no effect on k at low alkali concentrations, whereas at high concentrations an increase in ionic strength leads to an increase in k. A plot of 1/k versus [periodate] was linear with an intercept in both alkali ranges. Iodine was found to accelerate the reaction at the three different alkali concentrations employed. The observed results indicated the following equilibria for DPC.[Cu(H2IO6)2]3- [Cu(H2IO6)]- + H2IO6 3- [Cu(H2IO6)] + OH- [Cu(HIO6)]- + H2OA suitable mechanism has been proposed on the basis of these equilibria to account for the kinetic results.  相似文献   

19.
The kinetics and mechanism of interaction of periodate ion with [CoIIL(H2O)]2-n [L = trimethylenediaminetetraaceticacid (TMDTA)] and ethylene glycol bis(2-aminoethyl ether) N,N,N’,N’-tetraaceticacid (EGTA) have been studied spectrophotometrically by following an increase in absorbance at λmax = 550 nm in acetate buffer medium as a function of pH, ionic strength, temperature, various concentration of periodate and [CoIIL(H2O)]2-n under pseudo-first order conditions. The experimental observations have revealed that the intermediates having sufficiently high half life are produced during the course of both the reactions which finally get converted into a corresponding [CoIIIL(H2O)]3-n complexes as a final reaction product. The reaction is found to obey the general rate law Rate = (k2 [IO4 ?] + k3 [IO4 ?]2) [CoIIL(H2O)]2-n. This rate law is consistent with a four step mechanistic scheme (vide supra) where electron transfer proceeds through an inner sphere complex formation. The value of rate constant k2 is independent of pH over the entire pH range which suggest that unprotonated form of [CoIIL(H2O)]2-n is the only predominant species. The value of k2 is invariant to ionic strength variation in both the systems. The value of k3 is also found to be almost invariant to ionic strength in case of [CoIITMDTA(H2O)]2?-[IO4]? system but it decreases considerably in case of [CoIIEGTA(H2O)]2?-[IO4]? system with the corresponding decrease in ionic strength. The activation parameters have been computed and given in support of proposed mechanistic scheme.  相似文献   

20.
The mechanism of oxidation of ternary complexes, [CoII(nta)(S)(H2O)2]3? and [CoII(nta)(M)(H2O)]3? (nta = nitrilotriacetate acid, S = succinate dianion, and M = malonate dianion), by periodate in aqueous medium has been studied spectrophotometrically over the (20.0–40.0) ± 0.1°C range. The reaction is first order with respect to both [IO4?] and the complex, and the rate decreases over the [H+] range (2.69–56.20) × 10?6 mol dm?3 in both cases. The experimental rate law is consistent with a mechanism in which both the hydroxy complexes [CoII(nta)(S)(H2O)(OH)]4? and [CoII(nta)(M)(OH)]4? are significantly more reactive than their conjugate acids. The value of the intramolecular electron transfer rate constant for the oxidation of the [CoII(nta)(S)(H2O)2]3?, k1 (3.60 × 10?3 s?1), is greater than the value of k6 (1.54 × 10?3 s?1) for the oxidation of [CoII(nta)(M)(H2O)]3? at 30.0 ± 0.1°C and I = 0.20 mol dm?3. The thermodynamic activation parameters have been calculated. It is assumed that electron transfer takes place via an inner‐sphere mechanism. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 103–113, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号