首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From high‐resolution dielectric spectroscopy measurements on 1,4‐polybutadiene (1,4‐PB), we show that in addition to the structural α‐relaxation and higher frequency secondary relaxations in the spectra, a nearly constant loss (NCL) is observed at shorter times/lower temperatures. The properties of this NCL are compared to those of another chemically similar polymer, 1,4‐polyisoprene. The secondary relaxations in 1,4‐PB include the well‐known Johari‐Goldstein (JG) β‐relaxation and two other higher‐frequency peaks. One of these, referred to as the γ‐relaxation, falls between the JG‐relaxation and the NCL. Seen previously by others, this γ‐relaxation in 1,4‐PB is not the JG‐process and bears no relation to the glass transition. At very low temperatures (<15 K), we confirm the existence of a very fast secondary relaxation, having a weak dielectric strength and an almost temperature‐invariant relaxation time. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 342–348, 2007  相似文献   

2.
Dielectric spectroscopy was carried out to measure the α‐relaxation (local segmental motion) and the higher frequency, secondary relaxation (β‐mode) in 1,4‐polybutadiene, both neat and containing a nonpolar diluent, mineral oil. The α‐relaxation shifted to lower frequencies (antiplasticization) in the presence of the diluent, suggesting the glass temperature of the latter is higher than the Tg of the polymer (i.e., >187K). The Tg of neat mineral oil cannot be determined directly, due to crystallization. While the diluent increased the magnitude of the α‐relaxation times, it had no effect on the β‐relaxation. Moreover, neither the shape of the α‐relaxation function nor its temperature dependence was influenced by the diluent. From this we conclude that the main effect of the mineral oil was to increase the local friction, without changing the degree of intermolecular cooperativity of the molecular motions. We also find that near the glass temperature, there is rough agreement between the time scale of the secondary relaxation process and the value of a noncooperative relaxation time estimated from theory. This approximate correspondence between the two relaxation times also holds for 1,2 polybutadiene. However, the β‐process cannot be identified with the noncooperative α‐relaxation, and the relationship between them is not quantitative. © 2000 John Wiley & Sons, Inc.* J Polym Sci B: Polym Phys 38: 1841–1847, 2000  相似文献   

3.
The glass transition temperature, dynamic fragilities, and flow activation energy of a series of well‐entangled poly(α‐olefin) (PαO) molecular bottlebrushes were measured as a function of side chain length (Nsc ). The PαO bottlebrushes studied here have side chain lengths, Nsc , ranging from 4 (poly(1‐hexene)) to 10 (poly(1‐dodecene). A linear polyolefin (polypropylene), with Nsc = 1, was included in this study as a reference. The observed glassy dynamics behavior in the PαO bottlebrushes is opposite to that observed in linear polymers, namely, the glass transition temperature, the dynamic fragility, and the activation energy of structural relaxation are decreasing functions of the backbone rigidity. This anomalous behavior is due to a decrease in correlation between adjacent backbones, which is directly related to their cooperativity in the α‐relaxation, as Nsc and the concomitant distance between backbones increase. This change in conformation is also manifested as an increase in free volume and the consequent decrease in monomeric friction coefficient. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1293–1299  相似文献   

4.
In general, the complexation and gelation behavior between biocompatible poly(ε‐caprolactone) (PCL) derivatives and α‐cyclodextrin (α‐CD) is extensively studied in water, but not in organic solvents. In this article, the complexation and gelation behavior between α‐CD and multi‐arm polymer β‐cyclodextrin‐PCL (β‐CD‐PCL) with a unique “jellyfish‐like” structure are thoroughly investigated in organic solvent N,N‐dimethylformamide and a new heat‐induced organogel is obtained. However, PCL linear polymers cannot form organogels under the same condition. The complexation is characterized by rheological measurements, DSC, XRD, and SEM. The SEM images reveal that the complexes between β‐CD‐PCL and α‐CD present a novel topological helix porous structure which is distinctly different from the lamellar structure formed by PCL linear polymers and α‐CD, suggesting the unique “jellyfish‐like” structure of β‐CD‐PCL is crucial for the formation of the organogels. This research may provide insight into constructing new supramolecular organogels and potential for designing new functional biomaterials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1598–1606  相似文献   

5.
In this work thermal relaxations of chitosan are reported by using a novel methodology that includes subtraction of the dc conductivity contribution, the exclusion of contact and interfacial polarization effects, and obtaining a condition of minimum moisture content. When all these aspects are taken into account, two relaxations are clearly revealed in the low frequency side of the impedance data. We focus on the molecular motions in neutralized and non‐neutralized chitosan analyzed by dielectric spectroscopy in the temperature range from 25 to 250 °C. Low and high frequency relaxations were fitted with the Havriliak and Negami model in the 10?1 to 108 Hz frequency range. For the first time, the low frequency α‐relaxation associated with the glass‐rubber transition has been detected by this technique in both chitosan forms for moisture contents in the range 0.05 to 3 wt % (ca. 18–62 °C). A strong plasticizing effect of water on this primary α‐relaxation is observed by dielectric spectroscopy and is supported by dynamic mechanical analysis measurements. In the absence of water (<0.05 wt %) the α‐relaxation is obscured in the 20–70 °C temperature range by a superposition of two low frequency relaxation processes. The activation energy for the σ‐relaxation is about 80.0–89.0 kJ/mol and for β‐relaxation is about 46.0–48.5 kJ/mol and those values are in agreement with that previously reported by other authors. The non‐neutralized chitosan possess higher ion mobility than the neutralized one as determined by the frequency location of the σ‐relaxation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2259–2271, 2009  相似文献   

6.
A series of easily accessible and stable Schiff‐base nickel complexes (complex 1 – 4 ) in conjunction with methylaluminoxane (MAO) were employed for the synthesis of relatively high molecular weight β‐pinene polymers at high temperature with high productivity. The ligand structure of the complex had a substantial effect on the polymerization in terms of the productivity and the molecular weight. With complex 4 in the presence of MAO, high molecular weight polymers of β‐pinene (Mn ~ 10,900) were obtained at 40 °C with an extremely high productivity up to 1.25 × 107 g polyβ‐pinene/mol of Ni. 1H NMR analyses showed that the obtained β‐pinene polymer was structurally identical to that formed by conventional cationic Lewis acid initiators. The polymerization was presumably initiated by the nickel cation formed by the reaction of the schiff‐base nickel complex and MAO, while the propagation proceeded in a manner typical for a conventional carbocationic polymerization process. Direct evidence for the carbocationic polymerization was offered by the fact that quenching of the polymerization with methanol at a low monomer conversion resulted in incorporation of a methoxyl end group into the polymer chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3739–3746, 2007  相似文献   

7.
In this article, we present the synthesis and characterization of water‐soluble polymers with hydrophobic moieties. The polymers were synthesized in aqueous solutions utilizing β‐cyclodextrins as solubility enhancers to bring the hydrophobic monomers into solution. Polymers were made with different spacing between polymer backbone and phenyl moiety by using styrene, allylbenzene, and 4‐phenyl‐1‐butene as hydrophobic moieties, respectively. The effect of the presence of CDs during synthesis as well as this difference in spacing was investigated by rebinding free β‐CDs to the polymers. The interactions between polymers and CDs were studied by ITC and this revealed some differences between the polymers. Polymers made in the presence of CDs showed a markedly stronger binding to free CDs. The same was observed with polymers with a longer spacing between backbone and phenyl moiety. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6619–6629, 2009  相似文献   

8.
We report on the interpretation of the thermally stimulated depolarization current (TSDC) experiments, with partial polarization methods, on the dielectric α‐relaxation. The results obtained on polyvinyl acetate are rationalized on the basis of the Boltzmann superposition principle in combination with a Kohlrausch–Williams–Watts (KWW) time decay of the polarization (with the β exponent essentially temperature independent and equal to the value determined by conventional dielectric methods at Tg). From this analysis of the global TSDC spectrum we found a complex temperature dependence of the KWW relaxation time, which is Arrhenius‐like at the lowest temperatures but crosses over to the Vogel–Fulcher behavior observed above Tg in the temperature range of the TSDC peak. On the basis of these results, we found the way of predicting the TSDC spectra measured after partial polarization procedures. We found that, the distribution of activation energies and compensation behavior deduced by following the standard way of analysis are associated to the assumption of an Arrhenius‐like temperature dependence of the α‐relaxation time in the temperature range explored by TSDC. Therefore we conclude that both the distribution of activation energies and compensation behavior obtained by following the standard way of analysis do not give a proper physical picture of the α‐relaxation of glassy polymers around the glass‐transition temperature. Our results also show that the partial polarization TSDC methods are not able to give insight about the actual existence or not of a distribution of relaxation times at the origin of the nonexponentiality of the α‐relaxation of polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2105–2113, 2000  相似文献   

9.
We isolated α‐chitin, β‐chitin, and γ‐chitin from natural resources by a chemical method to investigate the crystalline structure of chitin. Its characteristics were identified with Fourier transform infrared (FTIR) and solid‐state cross‐polarization/magic‐angle‐spinning (CP–MAS) 13C NMR spectrophotometers. The average molecular weights of α‐chitin, β‐chitin, and γ‐chitin, calculated with the relative viscosity, were about 701, 612, and 524 kDa, respectively. In the FTIR spectra, α‐chitin, β‐chitin, and γ‐chitin showed a doublet, a singlet, and a semidoublet at the amide I band, respectively. The solid‐state CP–MAS 13C NMR spectra revealed that α‐chitin was sharply resolved around 73 and 75 ppm and that β‐chitin had a singlet around 74 ppm. For γ‐chitin, two signals appeared around 73 and 75 ppm. From the X‐ray diffraction results, α‐chitin was observed to have four crystalline reflections at 9.6, 19.6, 21.1, and 23.7 by the crystalline structure. Also, β‐chitin was observed to have two crystalline reflections at 9.1 and 20.3 by the crystalline structure. γ‐Chitin, having an antiparallel and parallel structure, was similar in its X‐ray diffraction patterns to α‐chitin. The exothermic peaks of α‐chitin, β‐chitin, and γ‐chitin appeared at 330, 230, and 310, respectively. The thermal decomposition activation energies of α‐chitin, β‐chitin, and γ‐chitin, calculated by thermogravimetric analysis, were 60.56, 58.16, and 59.26 kJ mol?1, respectively. With the Arrhenius law, ln β was plotted against the reciprocal of the maximum decomposition temperature as a straight line; there was a large slope for large activation energies and a small slope for small activation energies. α‐Chitin with high activation energies was very temperature‐sensitive; β‐Chitin with low activation energies was relatively temperature‐insensitive. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3423–3432, 2004  相似文献   

10.
The oxidative copolymerization of indene with styrene, α‐methylstyrene, and α‐phenylstyrene is investigated. Copolyperoxides of different compositions have been synthesized by the free‐radical‐initiated oxidative copolymerization of indene with vinyl monomers. The compositions of the copolyperoxides obtained from the 1H and 13C NMR spectra have been used to determine the reactivity ratios of the monomers. The reactivity ratios indicate that indene forms an ideal copolyperoxide with styrene and α‐methylstyrene and alternating copolyperoxides with α‐phenylstyrene. Thermal degradation studies via differential scanning calorimetry and electron‐impact mass spectroscopy support the alternating peroxide units in the copolyperoxide chain. The activation energy for thermal degradation suggests that the degradation is dependent on the dissociation of the peroxide (? O? O? ) bonds in the backbone of the copolyperoxide chain. Their flexibility has been examined in terms of the glass‐transition temperature. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2004–2017, 2002  相似文献   

11.
The solid phase transition mechanism of α‐ to β‐form crystal upon specific treating with supercritical CO2 + cosolvent on original pure α and mixed (α+β) form syndiotactic polystyrene (sPS) was investigated, using wide angle X‐ray diffraction and differential scanning calorimetry measurements as a function of temperature, pressure, and cosolvent content. As in the supercritical CO2, sPS in supercritical CO2 + cosolvent underwent solid phase transitions from α‐ to β‐form, and higher temperature or higher pressure favored this transformation. Due to the higher dipole moment of acetone, small amounts of acetone used as cosolvent with CO2 made the transition of α‐ to β‐form occur at lower temperature and pressure than in supercritical CO2, and made the α‐form crystal completely transform to β‐form in the original mixed (α+β) form, whereas ethanol did not. The original β‐form crystal in the original mixed (α+β) form sample acted as the nucleus of new β‐form crystal in the presence of cosolvent as it did in supercritical CO2, when compared with the original pure α‐form sample. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1625–1636, 2007  相似文献   

12.
In this article we report on the investigation of the dynamics of poly(vinyl alcohol) (PVA) and PVA‐based composite films by means of dielectric spectroscopy and dynamic mechanical thermal analysis. Once the characterization of pure PVA was done, we studied the effect of a nanostructured magnetic filler (nanosized CoFe2O4 particles homogeneously dispersed within a sulfonated polystyrene matrix) on the dynamics of PVA. Our results suggest that the α‐relaxation process, corresponding to the glass transition of PVA, is affected by the filler. The glass‐transition temperature of PVA increases with filler content up to compositions of around 10 wt %, probably as a result of polymer–filler interactions that reduce the polymer chain mobility. For filler contents higher than 10 wt %, the glass‐transition temperature of PVA decreases as a result of the absorption of water that causes a plasticizing effect. The β‐ and γ‐relaxation processes of PVA are not affected by the filler as stated from both dynamic mechanical thermal analysis and dielectric spectroscopy. Nevertheless, both relaxation processes are greatly affected by the moisture content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1968–1975, 2001  相似文献   

13.
A helical inclusion complex polymer was fabricated through the polymerization of β‐cyclodextrin‐threaded chiral monomers. The photo induced polymerization of inclusion complex clusters caused shrinkage of the polymer and decreased the pitches, leading to the disappearance of spring‐like construction under TEM. From the results of circular dichroism of the inclusion complex polymer, the helical construction was confirmed, and an entanglement of the polymer chains is proposed. After removal of the β‐cyclodextrins from the pendant groups of the inclusion complex polymer, the helical structure was found to be maintained. The highly ordered molecular arrangement of β‐cyclodextrins removed from the inclusion complex polymer was confirmed using POM. Here we demonstrate the fabrication of helical polymer fibers composed of entangled polymers through self‐assembled β‐cyclodextrin‐threaded chiral monomers. The helical polymer construction was maintained by the entwisted polymer chains even after the removal of β‐cyclodextrins from the pendant groups of the inclusion complex polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2975–2981, 2010  相似文献   

14.
A series of novel hyperbranched poly(ester‐amide)s (HBPEAs) based on neutral α‐amino acids have been synthesized via the “AD + CBB′” couple‐monomer approach. The ABB′ intermediates were stoichiometrically formed through thio‐Michael addition reaction because of reactivity differences between functional groups. Without any purification, in situ self‐polycondensations of the intermediates at elevated temperature in the presence of a catalyst afforded HBPEAs with multihydroxyl end groups. The degrees of branching (DBs) of the HBPEAs were estimated to be 0.40–0.58 and 0.24–0.54 by quantitative 13C NMR with two different calculation methods, respectively, depending on polymerization conditions and structure of monomers. The influences of catalyst, temperature, and intermediate structure on the polymerization process and molecular weights as well as properties of the resultant polymers were investigated. FTIR, NMR, and DEPT‐135 NMR analyses revealed the branched structure of the resultant polymers. The HBPEAs possess moderately high molecular weights with broad distributions, glass transition temperatures in the range of ?25.5 to 36.5 °C, and decomposition temperatures at 10% weight loss under nitrogen and air in the regions of 243.4–289.1 °C and 231.4–265.6 °C, respectively. Among them, those derived from D ,L ‐phenylalanine display the lowest degree of branching, whereas the highest glass transition temperature and the best thermal stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Optically pure S(?) and R(+)‐poly(α‐methyl‐α‐ethyl‐β‐propiolactones) (PMEPLs) of controlled low molecular weights were synthesized by anionic polymerization of the corresponding optically active monomers, and characterized using gel permeation chromatography, Maldi‐TOF mass spectrometry, and NMR spectroscopy. Blends of PMEPLs of opposite configurations and different molecular weights were investigated. All blends lead to the formation of a stereocomplex and its crystallization prevails over a wide range of mixing ratios. The stereocomplex melts 30–40 °C above that of the corresponding pure polymers, depending on the molecular weight; pairs of polymers having similar molecular weights exhibit the highest melting temperatures and enthalpies of fusion. Finally, when the stereocomplex is dispersed in a PMEPL matrix, it acts as a very effective nucleation agent for the crystallization of the polymer in excess. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2380–2389, 2007  相似文献   

16.
An α‐iminocarboxamide nickel complex was activated by trimethylaluminum (TMA) and used in the polymerization of ethylene and its copolymerization with 10‐undecen‐1‐ol. The best activity was observed upon activation with 9 equiv of TMA at a temperature of 26 °C. NMR spectroscopic studies did not show 10‐undecen‐1‐ol incorporation. However, FTIR analyses suggest the incorporation of a very small amount of comonomer, which affects the glass transition temperature, the degree of branching, and the mechanical properties of the materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 54–59, 2008  相似文献   

17.
The biomimic reactions of N‐phosphoryl amino acids, which involved intramolecular penta‐coordinate phosphoric‐carboxylic mixed anhydrides, are very important in the study of many biochemical processes. The reactivity difference between the α‐COOH group and β‐COOH in phosphoryl amino acids was studied by experiments and theoretical calculations. It was found that the α‐COOH group, and not β‐COOH, was involved in the ester exchange on phosphorus in experiment. From MNDO calculations, the energy of the penta‐coordinate phosphoric intermediate containing five‐member ring from α‐COOH was 35 kJ/mol lower than that of the six‐member one from β‐COOH. This result was in agreement with that predicted by HF/6‐31G** and B3LYP/6‐31G** calculations. Theoretical three‐dimensional potential energy surface for the intermediates predicted that the transition states 4 and 5 involving α‐COOH or β‐COOH group had energy barriers of ΔE=175.8 kJ?mol?1 and 210.4 kJ?mol?1, respectively. So the α‐COOH could be differentiated from β‐COOH intramolecularly in aspartic acids by N‐phosphorylation. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 41–51, 2001  相似文献   

18.
α‐Methyleneglutaric acid, a metabolite of niacin (nicotinic acid), can be easily converted to its cyclic anhydride. We report here the first conversion of α‐methyleneglutaric anhydride to (a series of) α‐methyleneglutarimides. These monomers can be radically polymerized to the title polymers. These have relatively high glass transition properties compared to the lower homologs derived from itaconimides (α‐methylenesuccinimides). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1020–1026  相似文献   

19.
By using a commercial β‐nucleating agent (TMB‐5) for polypropylene (PP), it was observed that high β‐crystal content in a compatibilized blend of polypropylene/polyamide‐6 (labeled as Blend‐03 in this work) can be achieved for samples prepared by compression moulding. As β‐PP possesses more superior impact strength then α‐PP, and the β to α transformation is an important mechanism of energy absorption for β‐PP, it is of obvious interest to understand the possibilities of β to α transformation in β‐polypropylene/polyamide‐6 blends. Tensile tests were performed at temperatures of 20, 30, 40, and 50 °C, and the occurrence of β to α transformation was monitored by differential scanning calorimeter and wide angle X‐ray diffraction measurements. It was observed that the β to α transformation in Blend‐03 could only be activated at elevated tensile testing temperatures. This was related to the increase in tensile elongation at break with the increase in tensile testing temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2674–2681, 2007  相似文献   

20.
A series of OEGylated poly(γ‐benzyl‐l ‐glutamate) with different oligo‐ethylene‐glycol side‐chain length, molecular weight (MW = 8.4 × 103 to 13.5 × 104) and narrow molecular weight distribution (PDI = 1.12–1.19) can be readily prepared from triethylamine initiated ring‐opening polymerization of OEGylated γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride. FTIR analysis revealed that the polymers adopted α‐helical conformation in the solid‐state. While they showed poor solubility in water, they exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic organic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol, and isopropanol). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the resulting polymers were highly dependent on the type of solvent, polymer concentration, side‐ and main‐chain length. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1348‐1356  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号