首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex [(HOCH2)3CNH3] 2 + [HgI4]2? (I) was synthesized by reacting (trioxymethyl)methylammonium iodide with mercury dioide (2: 1 mol/mol) in acetone. X-ray crystallography shows that the complex consists of two types of crystallographically independent [(HOCH2)3CNH3]+ cations and tetrahedral anions [HgI4]2? (IHgI, 106.49(2)°–113.99(4)°; Hg-I, 2.7849(8)-2.8105(8) Å. [(HOCH2)3CNH3]+ cations are linked via hydrogen bonds O…H-N and O-H…N (O…N, 2.84–2.92 Å) to form polymer chains, which are cross-linked with one another via anions (I…H, 2.81, 2.82 Å).  相似文献   

2.
Evidence for the existence of primitive life forms such as lichens and fungi can be based upon the formation of oxalates. These oxalates form as a film like deposit on rocks and other host matrices. The anhydrous oxalate mineral moolooite CuC2O4 as the natural copper(II) oxalate mineral is a classic example. Another example of a natural oxalate is the mineral wheatleyite Na2Cu2+(C2O4)2·2H2O. High resolution thermogravimetry coupled to evolved gas mass spectrometry shows decomposition of wheatleyite at 255°C. Two higher temperature mass losses are observed at 324 and 349°C. Higher temperature mass losses are observed at 819, 833 and 857°C. These mass losses as confirmed by mass spectrometry are attributed to the decomposition of tennerite CuO. In comparison the thermal decomposition of moolooite takes place at 260°C. Evolved gas mass spectrometry for moolooite shows the gas lost at this temperature is carbon dioxide. No water evolution was observed, thus indicating the moolooite is the anhydrous copper(II) oxalate as compared to the synthetic compound which is the dihydrate.  相似文献   

3.
The interaction of the [B10H10]2– and [B12H12]2– anions with aliphatic and aromatic nitro compounds (RNO2, where R = Et, n-Pr, i-Pr, tert-Bu, Ph) has been studied under irradiation with visible and UV light. It has been shown that, depending on the reaction conditions, both mono- and disubstituted nitro-closo-decaborates can be selectively obtained in yields up to 50%.  相似文献   

4.
Summary.  The diagram of the ternary system Mg2+/Cl, SO4 2−–H2O was established at 15°C by means of analytical and conductimetric measurements. Three compounds were found in this diagram, which are MgSO4·6H2O, MgSO4·7H2O, and MgCl2·6H2O. The solubility field of MgSO4·7H2O is important whereas those of MgSO4·6H2O and MgCl2·6H2O are small. The compositions (mass-%) of the two invariant points determined by the two methods are: MgSO4:MgCl2=2.73:33.80 and MgSO4: MgCl2=3.38:28.91. Both the measured and the calculated isotherm at 15°C have been used for modelling of the diagram Mg2+/Cl, SO4 2−–H2O between 0 and 35°C. The polythermal invariant point was approximately located between 15 and 10°C.  Corresponding author. E-mail: ariguib@planet.tn Received October 16, 2002; accepted (revised) December 3, 2002 Published online April 24, 2003 RID="a" ID="a" Dedicated to Prof. Dr. Heinz Gamsj?ger on the occasion of his 70th birthday  相似文献   

5.
In this article, corrosion of Invar® in a static carbon dioxide atmosphere \( 2\times 1 0^{4} \le P_{{{\text{CO}}_{ 2} }} \le 10^{5} \,{\text{Pa}} \) has been studied between 1163 and 1263 K. At the beginning, after a short initial deceleration for weight gains Δm/S <0.5 mg cm?2, oxidation kinetics were linear up to weight gains of about 4.0 mg cm?2, and only wüstite Fe1?x O was formed with a constant rate r (mg cm?2 s?1) \( r = \frac{{{\text{d}}\left( {\frac{\Updelta m}{S}} \right)}}{{{\text{d}}t}} = 0.41 \times P_{{{\text{CO}}_{ 2} }} \exp \left( {\frac{ - 198000}{RT}} \right) \) where R is the gas constant and t the time (s). Reaction mechanism is similar to that of the pure iron in analogous conditions, with the same rate limiting step i.e. external reaction of CO2 with wüstite and outward diffusion of ions Fe2+ (not limiting). For weight gains Δm/S higher than 4 mg cm?2, the limiting step changes, with an increase of the reaction rate and an internal oxidation. The origin of this mechanism change lies in the microcracks appearing in the oxide during its growth. Then, wüstite is no longer bound to the substrate; outward diffusion of ions Fe2+ stops and a topotactic transformation converts wüstite into magnetite.  相似文献   

6.
Double complex salts (DCS) α-[Pd(NH3)4][IrF6]·H2O (P21/m, a = 6.3181(3) Å, b = 10.8718(5) Å, с = 7.4526(4) Å, β = 103.568(2)°), β-[Pd(NH3)4][IrF6]·H2O (P21/с, a = 8.5773(3) Å, b = 10.8791(4) Å, с = = 12.6741(3) Å, β = 122.497(2)°), [Pd(NH3)4]3[IrF6]2Cl2·H2O (P-1, a = 7.6080(2) Å, b = 7.6274(2) Å, с = 11.8070(3) Å, β = 122.497(2)°), and [Pd(NH3)4]2[IrF6]NO3 (Fm-3m, a = 11.21210(10) Å) have been synthesized and structurally characterized for the first time. The existence of polymorphs for the DCS has been revealed. The influence of the chemical composition of the initial reagents on the reaction course and, respectively, the products, has been demonstrated. A hypothesis on the influence of the second coordination sphere on the formation of one or the other polymorph of the DCS has been suggested. It has been shown that the series α-[Pd(NH3)4][МF6]·H2O (M = Pt, Pd) exhibits isostructurality.  相似文献   

7.
CaAl2Si2O8: Eu2+, Mn2+ phosphors have been prepared by a sol–gel method. X-ray diffractometer, spectrofluorometer and UV–Vis spectrometer were used to characterize structural and optical properties of the samples. The results indicate that anorthite (CaAl2Si2O8) directly crystallizes at 1000 °C in the sol–gel process. CaAl2Si2O8: Eu2+, Mn2+ phosphors show two emission bands excited by ultraviolet light. Blue (around 415 nm) and yellow (around 575 nm) emissions originate from Eu2+ and Mn2+, respectively. With appropriate tuning of Mn2+ content, CaAl2Si2O8: Eu2+, Mn2+ phosphors exhibit different hues and relative color temperatures.  相似文献   

8.
The solubility in the 2Na+,Mg2+‖2Cl, 2ClO3-H2O system was studied at 20 and 100°C and the solubility diagrams were plotted. New compounds were not found to form in the title quaternary reciprocal system. The sodium chloride field was observed to expand with rising temperature.  相似文献   

9.
10.
Quasi-classical trajectory calculations and stochastic one-dimensional chemical master equation simulation methods are used to study the dynamics of the reaction of amidogen radical [NH2(2B1)] with hydroperoxyl radical [HO2(2A″)] on the lowest singlet electronic state. The title complex reaction takes place on a multi-well multichannel potential energy surface consisting of three deep potential wells and one van der Waals complex. In quasi-classical trajectory calculations a new analytical potential energy surface based on CCSD(T)/aug-cc-pVTZ//MPW1K/6-31+G(d,p) ab initio method was driven and used to study the dynamics of the title reaction. In quasi-classical trajectory calculations, the reactive cross sections and reaction probabilities are determined for 200–2000 K relative translational energies to calculate the rate constants. The same ab initio method was used to have the necessary data for solving the one-dimensional chemical master equation to calculate the rate constants of different channels. In solving the master equation, the Lennard-Jones potential model was used to form the collision between the collider gases. The fractional populations of different intermediates and products in the early stages of the reaction were examined to determine the role of the energized intermediates and the van der Waals complex on the dynamics of the title reaction. Although the calculated total rate constants from both methods are in good agreement with the reported experimental values in the literature, the quasi-classical trajectory simulation predicts the formation of NH2O + OH as the major channel in the title reaction in accordance with the previous studies (Sumathi and Peyerimhoff, Chem. Phys. Lett., 263:742–748, 1996), while the stochastic master equation simulation predicts the formation of HNO + H2O as the major products.  相似文献   

11.
With the help of the kinetic parameters (the rate constant (k in k p) and the apparent activation energy (E in E p) of the oscillatory induction period and oscillation period) of the oscillating reaction using thirteen amino acids, leucine (Leu), threonine (Thr), arginine (Arg), lysine (Lys), histidine (His), alanine (Ala), glutamine (Glu), glycine (Gly), methionine (Met), cystine (Cys), tryptophan (Trp), serine (Ser) and tyrosine (Tyr), as organic substrates in amino acid-BrO3-Mn2+-H2SO4-acetone system, then based on the Oregonator model and the thermodynamics theory on irreversible process, the thermodynamic function (ΔH in, ΔG in, ΔS in and ΔH p, ΔG p, ΔS p) of these oscillating system are studied. The results indicate the entropy ΔS of these oscillating reaction are negative, thereby it is proved that the oscillating reaction is a noequilibrium system with dissipation structure in agreement with the character of the oscillating reaction from disorder to order in irreversible thermodynamics. These are satisfactorily to explain the experimental phenomena.  相似文献   

12.
Inspired by carbo-benzene and its inorganic analogues, in the current work, the viability of extended systems (called carbomers) formed from aromatic small rings was studied. The aluminum aromatic cluster, Al42?, and its isoelectronic carbon analogue, C42+, were employed as starting point. The insertion of alkynyl units into the Al–Al and C–C bonds results in the extended molecules named carbomers. These molecules were compared with the global minima structures, which were searched employing the genetic algorithm program, GEGA. The electronic delocalization (aromaticity) of the isomers was studied with the induced magnetic field (Bind). The results showed that global minimum of C122+ (formed from C42+) was an unexpected diatropic structure which presented a similar magnetic response to the C42+ cluster. Also, optical properties of C122+ were computed.  相似文献   

13.
The temperature dependence of the 35Cl NQR frequencies and spin-lattice relaxation times has been investigated for a trigonal-bipyramidal vn complex SbCl3·NH2C6H5. Thermally activated motion of chlorine atoms (pseudorotation) was not revealed in the complex, in contrast to the vπ complexes of SbCl3 with related molecular structures. The high potential barrier of pseudorotation in the aniline complex is likely to be due to the unusually high nonequivalence of Sb-Cl chemical bonds.  相似文献   

14.
The dynamic structure of hydrogen sublattice in lawsonite, CaAl2[Si2O7](OH)2·H2O is studied by the solidstate proton magnetic resonance (1H NMR) spectroscopy of single crystal at room temperature. It is shown that both encapsulated water molecules, and hydroxyl OH-groups undergoes the rocking librations of the amplitudes of ~20° for H2O, and ~40° for hydroxyls.  相似文献   

15.
The enthalpies of formation of PbCl4, PbCl5 and PbCl62−, originating from quantum mechanics, have enabled the thermodynamic behaviour of these ions with respect to Cl-detachment to be assessed. The stability of salts containing PbCl5 and PbCl62− as a function of the dimensions of these anions and complementary cations was studied using an approach combining the Kapustinskii-Yatsimirskii equation with basic thermochemical relationships. It was found that hexachloroplumbates of monovalent metal cations will not dissociate into metal chlorides and PbCl4, provided the complementary cations are suitably large in size. Hexachloroplumbates of divalent metal cations have not yet been synthesised since no known metal cations attain the requisite large size. Such salts will not dissociate if the divalent metal cations are able to complex suitably large electron-donating ligands. The pentachloroplumbates of both monovalent and divalent metal cations are unstable, since no known metal cations have appropriately large ionic radii. The approach adopted appears to be useful for the examination of the thermal behaviour, stability and reactivity of chloroplumbates.  相似文献   

16.
The electronic structures of the complex ions [CuCl4]2? and [CuCl5]3? were analyzed in terms of the extended angular overlap model (AOM) with consideration to sd and pd mixing. The total antibonding orbital energies of these ions show no anomalies in the transition from a tetrahedron to a planar square [CuCl4]2? and from a trigonal bipyramid to a tetragonal pyramid [CuCl5]3?. Presumably, the existence of numerous intermediate forms of these complexes is mainly due to the packing effects rather than the electronic factors.  相似文献   

17.
A series of closo-decaborate anions containing an O-iminoacylamide oxime fragment were synthesized by nucleophilic addition of aromatic amide oximes to 2-propionitrilium closo-decaborate anion. The isolated compounds were characterized by IR, 1H, 13C–{1H}, and 11B–{1H} NMR, and mass spectra. The structure of (Ph4P)[2-B10H9NH=C(Et)ON=C(NH2)C6H4Me-2] was determined by single-crystal X-ray analysis.  相似文献   

18.
The complex [Ph3P] 4 + [Bi4I16]4? · 2 Me2C=O (I) was synthesized by the reaction of triphenyl(propyl)phosphonium iodide with bismuth iodide in acetone. The crystal structure of complex I was determined by X-ray crystallography. It contains, in addition to solvent molecules, two types of crystallographically independent tetrahedral tetraphenyl(propyl)phosphonium cations and tetranuclear anions [Bi4I16]4? in a chair conformation with the bismuth atoms being in an octahedral coordination. The Bi-I distances in the anion vary within 2.8768(4)–3.2524(4) Å.  相似文献   

19.
The reactions of 1,4-dioxane-substituted closo-decaborate anion ([B10H9O2C4H8]) with metal acetylenides, diethyl malonate, ethyl acetoacetate, triethyl orthoformate, acetylacetone, and malonodinitrile were studied. The reactions were shown to be accompanied with substituent ring opening and attachment of the corresponding pendant functional group. The obtained compounds were characterized by various physicochemical methods (IR and polynuclear NMR spectroscopy, ESI mass spectrometry).  相似文献   

20.
A new coordination polymer, [Cd(NH3)4]2{Cd[Re3Mo3S8(CN)6]}·1.5H2O (I), was prepared by the reaction between solutions of Cd(CH3COO)2 · 2H2O in aqueous ammonia and CaK4[Re3Mo3S8(CN)6] · 8H2O in water. The crystals are cubic, space group Fm3m (Prussian blue structural type); a = 15.0268(4) Å (CIF file CSD no. 431555). According to ESR data, compound I is paramagnetic, g-factor is 2.298. Thermal stability investigation by TGA and powder X-ray diffraction showed that elimination of coordinated NH3 molecules is accompanied by sample amorphization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号