首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular properties are computed as responses to perturbations (energy derivatives) in coupled-cluster (CC)/many-body perturbation theory (MBPT) models. Here, the CC/MBPT energy derivative with respect to a general two-electron (2-e) perturbation is assembled from gradient theory for 2-e property evaluation, including the electron repulsion energy. The correlation energy (?E) is shown to be the sum of response kinetic (?T), electron–nuclear attraction (?V), and electron repulsion (?V ee ) energies. Thus, evaluation of total V ee for energy component analysis is simple: For total energy (E), total 1-e responses T and V, and nuclear–nuclear repulsion energy (V NN ), V ee  = E ? V NN  ? T ? V is the true 2-e response value. Component energy analysis is illustrated in an assessment of steric repulsion in ethane’s rotational barrier. Earlier SCF-based results (Bader et al. in J Am Chem Soc 112:6530, 1990) are corroborated: The higher-energy eclipsed geometry is favored versus staggered in the two repulsion energies (V NN and V ee ), while decisively disfavored in electron–nuclear attraction energy (V). Our best quality calculations (CCSD/cc-pVQZ) attain practical Virial Theorem compliance (i.e., agreement among the kinetic energy, potential energy, and total energy representations) in assigning 2.70 ± 0.06 to the barrier height; ?195.80 kcal/mol is assigned to the drop in “steric” repulsion upon going to the eclipsed geometry. Steric repulsion is not responsible for any fraction of the ~3 kcal/mol barrier.  相似文献   

2.
In this study dibenzylidene ketone derivatives (2E,5E)-2-(4-methoxybenzylidene)-5-(4-nitrobenzylidene) cyclopentanone (AK-1a) and (1E,4E)-4-(4-nitrobenzylidene)-1-(4-nitrophenyl) oct-1-en-3-one (AK-2a) were newly synthesized, inspired from curcuminoids natural origin. Novel scheme was used for synthesis of AK-1a and AK-2a. The synthesized compounds were characterized by spectroscopic techniques. AK-1a and AK-2a showed high computational affinities (E-value >???9.0 kcal/mol) against cyclooxygenase-1, cyclooxygenase-2, proteinase-activated receptor 1 and vitamin K epoxide reductase. AK-1a and AK-2a showed moderate docking affinities (E-value >???8.0 kcal/mol) against mu receptor, kappa receptor, delta receptor, human capsaicin receptor, glycoprotein IIb/IIIa, prostacyclin receptor I2, antithrombin-III, factor-II and factor-X. AK-1a and AK-2a showed lower affinities (E-value >???7.0 kcal/mol) against purinoceptor-3, glycoprotein-VI and purinergic receptor P2Y12. In analgesic activity, AK-1a and AK-2a decreased numbers of acetic acid-induced writhes (P?<?0.001 vs. saline group) in mice. AK-1a and AK-2a significantly prolonged the latency time of mice (P?<?0.05, P?<?0.01 and P?<?0.001 vs. saline group) in hotplate assay. AK-1a and AK-2a inhibited arachidonic acid and adenosine diphosphate induced platelet aggregation with IC50 values of 65.2, 37.7, 750.4 and 422 µM respectively. At 30, 100, 300 and 1000 µM concentrations, AK-1a and AK-2a increased plasma recalcification time (P?<?0.001 and P?<?0.001 vs. saline group) respectively. At 100, 300 and 1000 µg/kg doses, AK-1a and AK-2a effectively prolonged bleeding time (P?<?0.001 and P?<?0.01 vs. saline group) respectively. Thus in-silico, in-vitro and in-vivo investigation of AK-1a and AK-2a reports their analgesic, antiplatelet and anticoagulant actions.  相似文献   

3.
The conformational properties of p-n-propyloxybenzoic acid and p-n-propyloxy-p′-cyanobiphenyl molecules, which can exhibit liquid crystalline properties in the formation of Н-complexes, are studied (DFT/B3LYP)/cc-pVTZ method). It is found that a molecule of p-n-propyloxybenzoic acid has 16 conformers that can be divided into four groups with respect to relative energies (0 kcal/mol, 1.6 kcal/mol, 6.5 kcal/mol, and 8.1 kcal/mol), and a molecule of p-n-propyloxy-p′-cyanobiphenyl has six conformers with relative energies of 0 kcal/mol (two conformers, φ(СPh–O–C–C)=180°) and 1.6 kcal/mol (four conformers, φ(СPh–O–C–C)=64.4°). In all conformers of the 3-AOCB molecule, phenyl rings are turned at 35° relative to each other. A conformation with the planar arrangement of two rings has a higher energy by 1.5 kcal/mol. Barriers to the internal rotation of different groups are determined and it is established that the structural nonrigidity of the molecules is mainly due to the possible rotation of the–C2Н5 moiety about the C–C bond. It is shown that with increasing temperature the vibrational amplitudes of the OC3H7 substituent, which enhance the probabilities of transitions between the conformers, become appreciably larger. It is found that p-n-propyloxybenzoic acid and p-n-propyloxy-p′-cyanobiphenyl can form Н-complexes with the medium hydrogen bond. Two types of the structural organization of Н-complexes are considered: linear and angular. The similarity of energies of Н-complexes with different structures (NBO analysis) can be the reason for the occurrence of two liquid crystalline subphases of p-n-propyloxybenzoic acid and p-n-propyloxy-p′-cyanobiphenyl system.  相似文献   

4.
A combined electron diffraction and quantum-chemical (MP2/6-31G**) study of the molecular structure of 2-methylbenzenesulfochloride at 336(5) K was carried out. It was found that the gas phase contained only one conformer, C 1. The following structural parameters were obtained: r h1(C-H)av = 1.095(8) Å, r h1(C-C)Ph = 1.402(4) Å, r h1(CPh-Cmeth) = 1.507(13) Å, r h1(CPh-S) = 1.763(6) Å, r h1(S=O) = 1.418(4) Å, r h1(S-Cl) = 2.048(5) Å, ∠(H-C-H)meth/av = 107.3(96)°, ∠(Cl-S-O)av = 106.4(3)°, ∠CPh-S-Cl = 100.8(9), ∠O=S=O = 120.8(10)°. The CC-CS-S-Cl torsion angle that defines the position of the S-Cl bond relative to the plane of the benzene ring is 75.6(20)°. The B3LYP/6-311+G** calculated barriers of internal rotation of the methyl and sulfochloride groups are 1.2 kcal/mol and V 01 = 10.2 (V 02 = 4.1) kcal/mol, respectively.  相似文献   

5.
The kinetics of gas reaction \(HOCl\underset{{k_r }}{\overset{{k_f }}{\longleftrightarrow}}H(^2 S) + OCl(X^2 \Pi _i )\) was analyzed by the MP4 method. In the temperature range of 100–373 K the rate constants k f and k r and equilibrium constant K were changed from 1.10 × 10?220 to 1.17 × 10?52 s?1, from 2.89 × 10?16 to 1.68 × 10?5s?1 and from 3.80 × 10?205 to 6.96 × 10?48 respectively. In the above temperature range, the activation energy of the forward reaction (E f) is 105.05 kcal/mol. In the same temperature interval there are two kinetic domains for the reverse reaction with activation energies (E r1 = 5.53 kcal/mol when T is 100–273 K and E r2 = 14.50 kcal/mol when T is 273–373 K, respectively.  相似文献   

6.
Equilibrium geometric parameters, normal mode frequencies and intensities in IR spectra, atomization enthalpy, and relative energies of low-lying electronic states of scandium fluoride molecules (ScF, ScF2, and ScF3) are calculated by the coupled-cluster method (CCSD(T)) in triple-, quadruple, and quintuple-zeta basis sets with the subsequent extrapolation of the calculation results to the complete basis set limit. The ScF molecule is also studied by the CCSDT technique. The error in the approximate calculation of triple excitations in the CCSD(T) method does not exceed 0.002 Å for the equilibrium internuclear distance R e, 4 cm?1 for the vibrational frequency, and 0.2 kcal/mol for the dissociation energy of the molecule. In the ground electronic state \(\tilde X^2 \) A 1(C 2ν ) of ScF2 molecules, R e(Sc-F) = 1.827 Å and αe(F-Sc-F) = 124.2°; the energy barrier to bending (linearization) h = E min(D g8h ) ? E min(C) = 1652 cm?1. The relative energies of Ã2Δ g and \(\tilde B^2 \)Π g electronic states are 3522 cm?1 and 14633 cm?1 respectively. The bond distance in the ScF3 molecule (\(\tilde X^1 \) A1, D 3h ) is refined: R e(Sc-F) = 1.842 Å. The atomization enthalpies Δat H 298 0 of ScF k molecules are 139.9 kcal/mol, 289.0 kcal/mol, and 444.8 kcal/mol for k = 1, 2, 3 respectively.  相似文献   

7.
B-Nb2O5 was recrystallized from commercially available oxide, and XRD analyses indicated that it is stable in contact with solutions over the pH range 0 to 9, whereas solid polyniobates such as Na8Nb6O19?13H2O(s) appear to predominate at pH>9. Solubilities of the crystalline B-Nb2O5 were determined in five NaClO4 solutions (0.1≤I m /mol?kg?1≤1.0) over a wide pH range at (25.0±0.1)?°C and at 0.1 MPa. A limited number of measurements were also made at I m =6.0 mol?kg?1, whereas at I m =1.0 mol?kg?1 the full range of pH was also covered at (10, 50 and 70)?°C. The pH of these solutions was fixed using either HClO4 (pH≤4) or NaOH (pH≥10) and determined by mass balance, whereas the pH on the molality scale was measured in buffer mixtures of acetic acid?+?acetate (4≤pH≤6), Bis-Tris (pH≈7), Tris (pH≈8) and boric acid?+?borate (pH≈9). Treatment of the solubility results indicated the presence of four species, \(\mathrm{Nb(OH)}_{n}^{5-n}\) (where n=4–7), so that the molal solubility quotients were determined according to:
$0\mathrm{.5Nb}_{2}\mathrm{O}_{5}\mathrm{(cr)+0}\mathrm{.5(2}n-5\mathrm{)H}_{2}\mathrm{O(l)}_{\leftarrow}^{\to}\mathrm{Nb(OH)}_{n}^{5-n}+(n-5)\mathrm{H}^{+}\quad (n=4\mbox{--}7)$
and were fitted empirically as a function of ionic strength and temperature, including the appropriate Debye-Hückel term. A Specific Interaction Theory (SIT) approach was also attempted. The former approach yielded the following values of log?10 K sn (infinite dilution) at 25?°C: ?(7.4±0.2) for n=4; ?(9.1±0.1) for n=5; ?(14.1±0.3) for n=6; and ?(23.9±0.6) for n=7. Given the experimental uncertainties (2σ), it is interesting to note that the effect of ionic strength only exceeded the combined uncertainties significantly in the case of log?10 K s6 to I m =1.0 mol?kg?1, such that these values may be of use by defining their magnitudes in other media. Values of Δ f G o, Δ f H o, S o and \(C_{p}^{\mathrm{o}}\) (298.15 K, 0.1 MPa) for each hydrolysis product were calculated and tabulated.
  相似文献   

8.
The crystal structures of four organoselenium compounds, viz. bis(2-formylphenyl)diselenide (5), bis(2-methylnaphthyl)diselenide (6), organoselenenyl sulfide (7), and spiroselenurane (8) are described. Crystal data for 5: space group Pca21, crystal system orthorhombic, a=7.9969(4) Å, b=20.8794(12) Å, c=15.8307(13) Å, Z=8, R=0.0292. Owing to the presence of a strong Se···O interaction in compound 5 the geometry around the selenium atom may be considered as T-shaped. Crystal data for 6: space group Pna21, crystal system orthorhombic, a=18.2253(12) Å, b=13.0714(8) Å, c=7.7355(5) Å, Z=4, R=0.0570. The molecule has a cisoid conformation. Crystal data for 7: space group Pbcn, crystal system orthorhombic, a=22.2144(13) Å, b=8.0255(4) Å, c=15.4496(9) Å, Z=8, R=0.0292. Due to intramolecular Se···N interaction in 7 the geometry around selenium is T- shaped. Crystal data for 8: space group P21/c, crystal system monoclinic, a=7.4585(5) Å, b=19.5634(13) Å, c=8.0428(5) Å, β=97.1320(10)°, Z=4, R=0.0254. The O?Se?O angle is 172.86(6)°.  相似文献   

9.
A novel cyclopropane derivative, 1-cyano-N-p-tolylcyclopropanecarboxamide (C12H12N2O, Mr = 200.24) was synthesized and its structure was studied by X-ray diffraction, FTIR, 1H and 13C NMR spectrum and MS. The crystals are monoclinic, space group P2_1/c with a = 7.109 (4), b = 13.758 (7), c = 11.505 (6) Å, α = 90.00, β = 102.731 (8), γ = 90.00 °, V = 1097.6 (9) Å3, Z = 4, F(000) = 312, D c  = 1.212 g/cm3, μ = 0.0800 mm?1, the final R = 0.0490 and wR = 0.1480 for 1,375 observed reflections with I > 2σ(I). A total of 6,109 reflections were collected, of which 2,290 were independent (R int = 0.0290). Theoretical calculation of the title compound was carried out with HF/6-31G (d,p), B3LYP/6-31G (d,p), MP2/6-31G (d,p). The full geometry optimization was carried out using 6-31G(d,p) basis set, and the frontier orbital energy. Atomic net charges were discussed, and the structure-activity relationship was also studied. The preliminary biological test showed that the synthesized compound is bioactive against the KARI of Escherichia coli.  相似文献   

10.
The reaction on 8-hydroxy quinoline-7-aldehyde azo compounds (HL n ) (where n = 1–5) with 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one to obtain HL n (where n = 6–10) have been characterized by means of TLC, melting point and spectral data, such as IR, 1H NMR, mass spectra and thermal studies. The X-ray diffraction patterns of two starting materials 8-hydroxy quinoline-7-aldehyde (start 1), 4-amino-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (start 2) and the ligands (HL5,10) are investigated in powder form. All the ligands have been screened for their antimicrobial activity against four local bacterial species, two Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) as well as against four local fungi; Aspergillus niger, Alternaria alternata, Penicillium italicum and Fusarium oxysporium. The results show that the azo ligands (HL n ) (where n = 1–5) have no antimicrobial activity against bacteria and fungi while most azomethine ligands (HL n ) (where n = 6–10) are good antibacterial agents against E. coli and K. pneumoniae as well as antifungal agents against P. italicum and A. alternata. The results were compared to standard substances (start 1) and (start 2). Among the azomethine ligands, HL10 was the most effective against the most microorganisms tested. The size of clear zone was ordered as p-(OCH3 < CH3 < H < Cl < NO2) as expected from Hammett’s constant (σ R ). Also, the ultrastructure study of the affected bacteria confirmed that HL8 is good antibacterial agent against E. coli and S. aureus.  相似文献   

11.
Schizophrenia is a debilitating mental disorder which affects approximately 1% of the world’s population. Clozapine is an atypical antipsychotic showing unmatched effectiveness in the control of treatment-resistant schizophrenia. Unlike typical antipsychotics, clozapine does not induce extrapyramidal side effects (EPS), tardive dyskinesia or elevate prolactin levels. However, clozapine can induce a potentially fatal blood disorder, agranulocytosis, in 1–2% of patients, severely limiting its clinical use. The model for antipsychotic activity under investigation is based on obtaining a clozapine-like profile with preferential dopamine D4 and serotonin 5-HT2A receptor affinity. Profiled herein are three unique members of a series of prospective antipsychotic agents. Compound (I) originated from the structural hybridization of the commercial therapeutics, clozapine and haloperidol, whilst compounds (II) and (III) possess an alternative tricyclic nucleus derived from JL13; a clozapine-like atypical antipsychotic developed by Liégeois et al. These compounds have been synthesized and characterized by means of elemental analysis, IR, 1H and 13C-NMR spectroscopy, MS and X-ray diffraction. Compound (I) crystallizes in space group P(?1) with a = 10.5032(1), b = 10.6261(2), c = 12.6214(3) Å, α = 81.432(1)°, β = 83.292(1)°, γ = 61.604(1)°, Z = 2, V = 1223.62(4) Å3, C28H29ClN4O, M r = 473.00, D c = 1.284 Mg/m3, μ = 0.185 mm?1, F(000) = 500, R = 0.0506 and wR = 0.1304. Compound (II) crystallizes in the monoclinic space group P21/c with a = 10.8212(2), b = 9.3592(2), c = 22.9494(5) Å, β = 106.471(1)°, Z = 4, V = 2228.88(8) Å3, C25H25ClN4O2, M r = 448.94, D c = 1.338 Mg/m3, μ = 0.202 mm?1, F(000) = 944, R = 0.0529 and wR = 0.1129. Compound (III) crystallizes in the monoclinic space group P21/c with a = 10.5174(2), b = 9.3112(2), c = 24.2949(5) Å, β = 98.666(1)°, Z = 4, V = 2352.03(8) Å3, C25H24Cl2N4O2, M r = 483.38, D c = 1.365 Mg/m3, μ = 0.306 mm?1, F(000) = 1008, R = 0.0478 and wR = 0.1067. The solid state conformations of (I), (II) and (III) exhibit the characteristic V-shaped buckled nature of the respective dibenzodiazepine and pyridobenzoxazepine nuclei with the central seven-membered heterocycle in a boat conformation. The molecules of (I) form a head-to-tail dimeric motif stabilized by hydrogen bonding. The results of a conformational analysis of compounds (I)–(III) investigating the effect of environment (in vacuo and aqueous solution) are presented. These analogues were tested for in vitro affinity for the dopamine D4 and serotonin 5-HT2A receptors and their comparative receptor binding profiles to clozapine and JL13 are reported.  相似文献   

12.
The molecular structure and conformation of nitrobenzene has been reinvestigated by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) spectroscopic data, and quantum chemical calculations. The equilibrium r e structure of nitrobenzene was determined by a joint analysis of the GED data and rotational constants taken from the literature. The necessary anharmonic vibrational corrections to the internuclear distances (r e ? r a) and to rotational constants (B e (i)  ? B 0 (i) ) were calculated from the B3LYP/cc-pVTZ quadratic and cubic force fields. A combined analysis of GED and MW data led to following structural parameters (r e) of planar nitrobenzene (the total estimated uncertainties are in parentheses): r(C–C)av = 1.391(3) Å, r(C–N) = 1.468(4) Å, r(N–O) = 1.223(2) Å, r(C–H)av = 1.071(3) Å, \({\angle}\)C2–C1–C6 = 123.5(6)°, \({\angle}\)C1–C2–C3 = 117.8(3)°, \({\angle}\)C2–C3–C4 = 120.3(3)°, \({\angle}\)C3–C4–C5 = 120.5(6)°, \({\angle}\)C–C–N = 118.2(3)°, \({\angle}\)C–N–O = 117.9(2)°, \({\angle}\)O–N–O = 124.2(4)°, \({\angle}\)(C–C–H)av = 120.6(20)°. These structural parameters reproduce the experimental B 0 (i) values within 0.05 MHz. The experimental results are in good agreement with the theoretical calculations. The barrier height to internal rotation of nitro group, 4.1±1.0 kcal/mol, was estimated from the GED analysis using a dynamic model. The equilibrium structure was also calculated using the experimental rotational constants for nitrobenzene isotopomers and theoretical rotation–vibration interaction constants.  相似文献   

13.
In this work, the encapsulations of halide ions including F?, Cl?, and Br? by cyclic peptide nanocapsule as ion carrier (F?, Cl?, and Br? @(Ala4...Ala4)) were investigated using the dispersion corrected density functional theory (DFT) employing CAM-B3LYP functional and the 6–311?+?G (d, p) basis set in the gas phase. The electronic binding energy (Ebind), binding enthalpy (Hbind), and binding Gibbs free energy (Gbind) for each anion were calculated and showed that the stability order of the complexes based on their calculated Ebind is F??>?Cl??>?Br? @(Ala4...Ala4). The calculated value of Gbind for F? @(Ala4...Ala4) was ??29.77 kcal/mol showing the formation of this complex is thermodynamically favorable while the formation of Br? @(Ala4...Ala4) is 14.35 kcal/mol which shows that the encapsulation of Br? is not possible. The calculated value of Gbind for Cl? @(Ala4...Ala4) was ??0.57 kcal/mol which shows that Cl? ion can be reversibly stored inside the nanocapsule. The NBO analysis was also performed to investigate the charge transfer between two cyclic peptides in the complexes and also between the anion and the nanocapsule. The NBO analysis showed that the strongest hydrogen bonds between two cyclic peptides are in the complex.  相似文献   

14.
A novel bis-heterocyclic compound was synthesized and characterized. The crystal structure of the title compound (C22H20ClN5OS, Mr = 437.94) has been determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group P-1 with a = 8.646 (2), b = 9.148 (3), c = 14.540 (4) Å, α = 94.422 (4), β = 98.500 (4), γ = 102.823 (4)°, V = 1101.8 (5) Å3, Z = 2, F(000) = 312, Dc = 1.320 g/cm3, μ = 0.2900 mm?1, the final R 1 = 0.041000 and wR 2 = 0.1160 for 2675 observed reflections with I > 2σ(I). A total of 5623 reflections were collected, of which 3866 were independent (R int = 0.019000). The fungicidal activity of title compound was determined, the results showed the title compound displayed moderate fungicidal activity against G. zeae Petch, Phytophthora infestans (Mont.) de Bary, Botryosphaeria berengeriana f. sp. piricola (Nose) koganezawa et Sakuma, Fusarium oxysporum f.sp. cucumerinum, and Cercospora arachidicola.  相似文献   

15.
A new three-dimensional platinum(II)–thallium(I) coordination polymer [{Pt(pda)(NHCOtBu)2}4Tl4][Pt(CN)4]2·2H 2 O (pda = 1,2-propyldiamine) has been prepared from the direct reaction of [Tl2Pt(CN)4] and [Pt(pda)(NHCOtBu)2] in water, and its structure was characterized by X-ray diffraction analysis. The compound crystallizes in monoclinic, space group Pn, a = 11.567(2) Å, b = 11.570(2) Å, c = 37.677(8)Å, β = 94.64(3)°, V = 5025.8(17) Å3, Z = 2, R1 = 0.0679 and wR2 = 0.1574 [I >  2σ (I)], Goodness-of-fit on F 2 = 1.055. The compound exhibits a novel 3D network structure consisting of [Pt(CN)4]2? connected 1D infinite Pt–Tl–Pt–Tl chains via strong Pt–Tl bonds.  相似文献   

16.
Two series of water-soluble metalloporphyrin-cored amphiphilic star block copolymers were synthesized by controlled radical polymerizations such as atom transfer radical polymerization (ATRP) and reversible addition fragmentation chain transfer (RAFT), which gave eight amphiphilic block copolymer arm chains consisting of poly(n-butyl acrylate-b-poly(ethylene glycol) methyl ether methacylate) (PnBA-b-PEGMEMA, Mn,GPC = 78,000, Mw/Mn = 1.2, 70 wt% of PPEGMEMA) and poly(styrene-b-2-dimethylamino ethyl acrylate) (PS-b-PDMAEA, Mn,GPC = 83,000, Mw/Mn = 1.2, 67 wt% of PDMAEA), yielding porphyrin(Pd)-(PnBA-b-PPEGMEMA)8 and porphyrin(Pd)-(PS-b-PDMAEA)8, respectively. Obtained metalloporphyrin polymer photocatalysts were homogeneously solubilized in water to apply to the removal of chlorophenols in water, and was distinguished from conventional water-insoluble small molecular metalloporphyrin photocatalysts. Notably, we found that the water-soluble star block copolymers with hydrophobic–hydrophilic core–shell structures more effectively decomposed the chlorophenol, 2,4,6-trichlorophenol (2,4,6-TCP), in water under visible light irradiation (k = 1.39 h?1, t1/2 = 0.5 h) in comparison to the corresponding water-soluble star homopolymer, because the hydrophobic core near the metalloporphyrin effectively captured and decomposed the hydrophobic chlorophenols in water.  相似文献   

17.
The molecular structure of 2-chlorobenzenesulfonyl chloride was studied by electron diffraction and quantum-chemical (2/6-31G**, B3LYP/6-311++G**) methods at 337(3) K. Only one (C 1) conformer was found in the gas phase. The following structural parameters were obtained: r h1(C-H)av = 1.105(6) Å, r h1(C-C)av = 1.398(3) Å, r h1(C-S) = 1.783(11) Å, r h1(S=O)av = 1.427(3) Å, r h1(S-Cl) = 2.048(4) Å, r h1(C-Cl) = 1.731(9) Å, ∠(C-S=O1) = 109.9(8) °, ∠(C-S=O2) = 106.9(8) °, ∠(Cl1-S-O1) = 107.3(4) °, ∠(Cl1-S-O2) = 106.4(4) ∠, ∠C-S-Cl = 102.1(6) °, ∠O=S=O = 122.3(11) °. The C2-C1-S-Cl1 torsion angle that defines the position of the S-Cl bond relative to the plane of the benzene ring was 69.7(8) °. The B3LYP/6-311++G** calculated barriers of internal rotation of the sulfonyl chloride group were V 01 = 9.7 kcal/mol and V 02 = 3.6 kcal/mol.  相似文献   

18.
LRM (Low Rank Modification) is a mathematical method that produces eigenvalues and eigenstates of generalized eigenvalue equations. It is similar to the perturbation expansion in that it assumes the knowledge of the eigenvalues and eigenstates of some related (unperturbed) system. However, unlike perturbation expansion, LRM produces correct results however large the modification of the original system. LRM of finite-dimensional systems is here generalized to the combined (external and internal) modifications. Parent n-dimensional system A n containing n eigenvalues λ i and n eigenstates \({| {\Phi_i}\rangle}\) is described by the generalized n × n eigenvalue equation. In an external modification system A n interacts with another ρ-dimensional system B ρ which is situated outside the system A n . In an internal modification relatively small σ-dimensional subsystem of the parent system A n is modified. Modified system C n+ρ that contains external as well as internal modifications is described by the generalized (n + ρ) × (n + ρ) eigenvalue equation. This system has (n + ρ) eigenvalues \({\varepsilon_s}\) and (n + ρ) corresponding eigenstates \({| {\Psi_s}\rangle}\) . In LRM this generalized (ρn) × (ρn) eigenvalue equation is replaced with a (nonlinear) (ρ + σ) × (ρ + σ) equation which produces all eigenvalues \({\varepsilon_s \notin \left\{ {\lambda_i}\right\}}\) and all the corresponding eigenstates \({| {\Psi_s}\rangle }\) of C n + ρ. Another equation produces remaining solutions (if any) that satisfy \({\varepsilon_s \in \left\{ {\lambda_i}\right\}}\) . Those two equations produce exact solution of the modified system C n + ρ. If (ρσ) is small with respect to n, this approach is numerically much more efficient than a standard diagonalization of the original generalized eigenvalue equation. Unlike perturbation expansion, LRM produces exact results, however large modification of the parent system A n .  相似文献   

19.
Chemical preparation, crystal structure, and NMR spectroscopy of a new trans-2,5-dimethylpiperazinium monophosphate are given. This new compound crystallizes in the triclinic system, with the space group P-1 and the following parameters: a = 6.5033(3), b = 7.6942(4), c = 8.1473(5) Å, α = 114.997(3), β = 92.341(3), γ = 113.136(3), V = 329.14(3) Å3, Z = 1, and Dx = 1.565 g cm?3. The crystal structure has been determined and refined to R = 0.030 and R w(F 2) = 0.032 using 1558 independent reflections. The structure can be described as infinite [H2PO4] n n? chains with (C6H16N2)2+ organic cations anchored between adjacent polyanions to form columns of anions and cations running along the b axis. This compound has also been investigated by IR, thermal, and solid-state, 13C and 31P MAS NMR spectroscopies and Ab initio calculations.  相似文献   

20.
Guanidine dichloroacetate was synthesized and separated as crystals. Differential scanning calorimetry (DSC) measurement shows that this compound undergoes a reversible phase transition at about 275 K with a heat hysteresis of 28 K. Step-like dielectric anomaly observed at 274 K further confirms the phase transition. The single-crystal X-ray diffraction data suggested that these was a transition from a room-temperature phase with the space group of P21/n (a = 8.030(5), b = 12.014(9), c = 8.124(6) Å, β = 96.089(1)°, V = 779.3(1) Å3, and Z = 4) to a low-temperature one with the space group of P21/c (a = 7.941(2), b = 11.828(3), c = 10.614(2) Å, β = 130.985(1)°, V = 752.6(3) Å3, and Z = 4). The displacements of hydrogen bonds induce the structure phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号