首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
The properties of transition metal oxides are related to the presence of elements with mixed valences. The spectroscopy analysis of the valence states is feasible experimentally, but a spatial mapping of valence states of transition metal elements is a challenge to existing microscopy techniques. In this paper, with the use of valence state information provided by the white lines and near-edge fine structures observed using the electron energy-loss spectroscopy (EELS) in a transmission electron microscope (TEM), a novel experimental approach is demonstrated to map the valence state distributions of Mn and Co using the ratio of white lines in the energy-filtered TEM. The valence state map is almost independent of specimen thickness in the thickness range adequate for quantitative EELS microanalysis. An optimum spatial resolution of approximately 2 nm has been achieved for a two-phase Co oxides.  相似文献   

2.
Intra-atomic d-d transitions in NiO(100) and CoO(100) have been investigated with angle-resolved electron energy loss spectroscopy (EELS) at primary energies close to the metal 3s excitation threshold. Electron exchange scattering was found to be resonantly enhanced at the 3s threshold due to the temporary formation of a negative ion core state and its subsequent decay via Auger-like transitions. In both oxides the threshold is lowered several eV due to a strong electron- core hole interaction. Angle-dependent studies reveal a different dependency of exchange processes on the scattering angle as compared with nonresonant measurements and reveal a different angle dependence for each specific d-d transition. It is suggested that in these oxides large-angle single-step inelastic scattering contributes significantly to the EELS measurements in reflection mode.  相似文献   

3.
Electron energy loss spectroscopy (EELS) is a powerful technique for studying Li-ion battery materials because the valence state of the transition metal in the electrode and charge transfer during lithiation and delithiation processes can be analyzed by measuring the relative intensity of the transition metal L3 and L2 lines. In addition, the Li distribution in the electrode material can be mapped with nanometer scale resolution. Results obtained for FeO0.7F1.3/C nanocomposite positive electrodes are presented. The Fe average valence state as a function of lithiation (discharge) has been measured by EELS and results are compared with average Fe valence obtained from electrochemical data. For the FeO0.7F1.3/C electrode discharged to 1.5 V, phase decomposition is observed and valence mapping with sub-nanometer resolution was obtained by STEM/EELS analysis. For the lowest discharge voltage of 0.8 V, a surface electrolyte inter-phase (SEI) layer is observed and STEM/EELS results are compared with the Li-K edges obtained for various Li standard compounds (LiF, Li2CO3 and Li2O).  相似文献   

4.
Since transition metal oxides are wide bandgap, low conductivity materials compared to conventional semiconductors, surface analysis by scanning tunneling microscopy (STM) is expected to be problematic. This paper considers the factors that affect atomic scale imaging of transition metal oxides and demonstrates how STM can be exploited to examine the geometric and electronic structures of SrTiO3 and TiO2 surfaces, their variations with thermochemical history, and the mechanisms of metal/oxide interface formation. The development of periodic atomic scale surface structure with variations in surface compositions are documented for both oxides. Further, the interactions of these surfaces with metal are examined by characterizing the morphologies that develop upon deposition of Cu on SrTiO3 and Al on TiO2.  相似文献   

5.
铜的价态光电子能谱和X光引发的Auger谱分析   总被引:4,自引:0,他引:4  
  相似文献   

6.
Specific information on the energy level diagram and on the energy forbidden gap of tetraphenylporphyrin and its Ni derivative has been obtained by means of electron energy-loss spectroscopy (EELS) and X-ray photoelectron spectroscopy techniques. Comparison of the free ligand and its metal derivative emphasizes the importance of the metal 3d levels in the conduction processes. The interband and plasmon transition present in the EELS spectra of these species are compared with the theoretically calculated energy level diagram and experimental data.  相似文献   

7.
The interaction between itinerant and Mott localized electronic states in strongly correlated materials is studied within dynamical mean field theory in combination with the numerical renormalization group method. A novel nonmagnetic zero temperature quantum phase transition is found in the bad-metallic orbital-selective Mott phase of the two-band Hubbard model, for values of the Hund's exchange which are relevant to typical transition metal oxides.  相似文献   

8.
目前在磁性材料磁有序现象研究中广泛使用的交换作用、超交换作用和双交换作用模型形成于1950年代及其以前,这些模型都涉及材料中的价电子状态,但那时还没有充分的价电子状态实验依据.1970年代以来,有关价电子结构实验结果的报道越来越多,这些实验结果表明传统的磁有序模型需要改进.首先,大量电子谱实验表明,在氧化物中除存在负二价氧离子之外,还存在负一价氧离子,并且负一价氧离子的含量可达30%或更多.这说明以所有氧离子都是负二价离子为基本假设的超交换和双交换作用模型需要改进.其次,一些实验证明,铁、钴、镍自由原子的一部分4s电子在形成铁磁性金属的过程中变成了3d电子,这为探讨金属磁性与电输运性质的关系提供了依据.此外,即使在现代的密度泛函计算中,仍不能给出磁性交换作用能的函数表达式,只能采取各种不同模型进行模拟计算,从而使磁性材料的模拟计算遇到严重困难.寻求一个磁有序能的函数表达式可能是解决这个困难的途径.这些研究表明磁性材料价电子结构研究面临着重大的机遇与挑战.本文首先介绍一些典型的实验例证,然后介绍了基于这些实验结果的一套典型磁性材料的磁有序新模型,随后介绍了基于新模型的磁性材料价电子结构与旧模型的主要区别,最后指出了未来研究工作面临的挑战.  相似文献   

9.
The CTM4XAS program for the analysis of transition metal L edge Electron Energy Loss Spectroscopy (EELS) or X-ray Absorption Spectra (XAS) is explained. The physical background of the calculations is briefly discussed. The program consists of three theoretical components, based on, respectively, atomic multiplet theory, crystal field theory and charge transfer theory. The theoretical concepts are explained and a number of examples are presented. The calculation of the 2p EELS and XAS spectra of transition metal ions, is given in detail, including their Magnetic Circular Dichroism (MCD). In addition, examples of 1s, 2s, 3s, 2p and 3p X-ray Photoemission Spectroscopy (XPS) are given.  相似文献   

10.
L(2,3) inner-shell excitation spectra were obtained by electron energy-loss spectroscopy (EELS) for the divalent first transition series metals in phthalocyanine complexes (MPc) such as titanium oxide phthalocyanine (TiOPc), fluoro-chromium phthalocyanine (CrFPc), manganese phthalocyanine (MnPc), iron phthalocyanine (FePc), cobalt phthalocyanine (CoPc), nickel phthalocyanine (NiPc) and copper phthalocyanine (CuPc). It was found that the value of normalized total intensity of I(L2 + L3) was nearly proportional to the formal electron vacancies of each 3d-state, and the values of the branching ratio, I(L3)/I((L2 + L3), represented a high-spin-state rather than low-spin-state for MnPc, FePc and NiPc. EELS was also applied to charge-transfer complexes of FePc with an amine such as pyridine or gamma-picoline. It was concluded that their I(L2 + L3) intensity of Fe showed the decrease in vacancies of 3d-states on the formation of the charge-transfer complex with these amines, which suggests some electron transfer from the amine to Fe in phthalocyanine. The EELS study provides beneficial information for investigating the electronic states of the specific metal sites in organic materials.  相似文献   

11.
K. Held 《物理学进展》2013,62(6):829-926
The calculation of the electronic properties of materials is an important task of solid-state theory, albeit particularly difficult if electronic correlations are strong, e.g., in transition metals, their oxides and in f-electron systems. The standard approach to material calculations, the density functional theory in its local density approximation (LDA), incorporates electronic correlations only very rudimentarily and fails if the correlations are strong. Encouraged by the success of dynamical mean field theory (DMFT) in dealing with strongly correlated model Hamiltonians, physicists from the bandstructure and the many-body communities have joined forces and developed a combined LDA + DMFT method recently. Depending on the strength of electronic correlations, this new approach yields a weakly correlated metal as in the LDA, a strongly correlated metal or a Mott insulator. This approach is widely regarded as a breakthrough for electronic structure calculations of strongly correlated materials. We review this LDA + DMFT method and also discuss alternative approaches to employ DMFT in electronic structure calculations, e.g., by replacing the LDA part with the so-called GW approximation. Different methods to solve the DMFT equations are introduced with a focus on those that are suitable for realistic calculations with many orbitals. An overview of the successful application of LDA + DMFT to a wide variety of materials, ranging from Pu and Ce, to Fe and Ni, to numerous transition metal oxides, is given.  相似文献   

12.
Skutterudites, with rattler atoms introduced in voids in the crystal unit cell, are promising thermoelectric materials. We modify the binary skutterudite with atomic content Co(8)P(24) in the cubic crystal unit cell by adding La as rattlers in all available voids and replacing Co by Fe to maintain charge balance, resulting in La(2)Fe(8)P(24). The intention is to leave the electronic structure unaltered while decreasing the thermal conductivity due to the presence of the rattlers. We compare the electronic structure of these two compounds by studying the L-edges of P and of the transition elements Co and Fe using electron energy loss spectroscopy (EELS). Our studies of the transition metal white lines show that the 3d electron count is similar for Co and Fe in these compounds. As elemental Fe has one electron less than Co, this supports the notion that each La atom donates three electrons. The L-edges of P in these two skutterudites are quite similar, signalling only minor differences in electronic structure. This is in reasonable agreement with density functional theory (DFT) calculations, and with our multiple scattering FEFF calculations of the near edge structure. However, our experimental plasmon energies and dielectric functions deviate considerably from predictions based on DFT calculations.  相似文献   

13.
Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures. In these experiments a wide range of dielectrics have been studied including binary transition metal oxides, perovskite oxides, chalcogenides, carbon- and silicon-based materials, as well as organic materials. RS phenomena can be used to store information and offer an attractive performance, which encompasses fast switching speeds, high scalability, and the desirable compatibility with Si-based complementary metal-oxide-semiconductor fabrication. This is promising for nonvolatile memory technology, i.e., resistance random access memory (RRAM). However, a comprehensive understanding of the underlying mechanism is still lacking. This impedes faster product development as well as accurate assessment of the device performance potential. Generally speaking, RS occurs not in the entire dielectric but only in a small, confined region, which results from the local variation of conductivity in dielectrics. In this review, we focus on the RS in oxides with such an inhomogeneous conductivity. According to the origin of the conductivity inhomogeneity, the RS phenomena and their working mechanism are reviewed by dividing them into two aspects: interface RS, based on the change of contact resistance at metal/oxide interface due to the change of Schottky barrier and interface chemical layer, and bulk RS, realized by the formation, connection, and disconnection of conductive channels in the oxides. Finally the current challenges of RS investigation and the potential improvement of the RS performance for the nonvolatile memories are discussed.  相似文献   

14.
The chemical bond between atoms in metal oxides is expressed in an energy scale. Total energy is partitioned into the atomic energy densities of constituent elements in the metal oxide, using energy density analysis. The atomization energies, ΔEM for metal atom and ΔEO for O atom, are then evaluated by subtracting the atomic energy densities from the energy of the isolated neutral atom, M and O, respectively. In this study, a ΔEO vs. ΔEM diagram called atomization energy diagram is first proposed and used for the understanding of the nature of chemical bond in various metal oxides. Both ΔEM and ΔEO values reflect the average structure as well as the local structure. For example their values vary depending on the vertex, edge or face sharing of MO6 octahedron, and also change with the overall density of binary metal oxides. For perovskite-type oxides it is shown that the ΔEO value tends to increase by the phase transition from cubic to tetragonal phase, regardless of the tilting-type or the 〈1 0 0〉 displacement-type transition. The bond formation in spinel-type oxides is also understood with the aid of the atomization energies. The present approach based on the atomization energy concept will provide us a new clue to the design of metal oxides.  相似文献   

15.
XANES measurements are reported for a number of transition metal oxides. Oxide phases, in which the transition element could be widely varied (within the 3d series) while preserving the crystal structure, were systematically examined. The materials examined include monoxides, perovskites, zircons and spinels. For those samples of a given oxide phase, the near edge spectra are nearly identical but spectra for different phases are dissimilar. These observations are consistent with the simplest view of the x-ray absorption process, namely that dipole selection rules are obeyed and spectral features predominately result from transitions between the K shell and empty states with p-character.  相似文献   

16.
We review a perspective of doped transition metal oxides as correlated electron materials governed by functional multiscale complexity. We emphasize several themes: the prevalence of intrinsic complexity realized in the coexistence or competition among broken-symmetry ground states; the origin of landscapes of spatio-temporal patterns in coupled spin, charge and lattice (orbital) degrees-of-freedom; the relevance of co-existing short- and long-range forces; and the importance of multiscale complexity for key materials properties, including multifunctional ‘electro-elastic’ materials.  相似文献   

17.
Metal atom located on metal oxide (MMO) is a promising material with various applications such as hydrogen storage. As one of the metal oxides, niobium oxide (NbO) presents fascinating properties that make it a possibly applicable in MMOs. Here, we investigated the feasibility of transition metal-NbO hybrids as MMO materials for application in the hydrogen storage technology. In this respect, the hydrogen adsorption of transition metals (Fe, Ni, Cu, Pd, Ag, and Pt) decorated on the NbO nanocluster has been explored using density functional theory calculations. We found that the adsorption energy of the H2 molecule on the NbO adsorbent is remarkably increased by locating the transition metals on the NbO metal oxide. Our results reveal that the transition metals decorated on the NbO nanocluster can act as active sites for hydrogen adsorption. Among the studied transition metals, Pt shows the highest hydrogen capacity up to 6.52 wt%.  相似文献   

18.
Current interest in the properties of materials having grains in the nanometer regime has led to the investigation of the size-dependent properties of various dielectric and magnetic materials. We discuss two chemical methods, namely the reverse-micellar route and the polymeric citrate precursor route used to obtain homogeneous and monophasic nanoparticles of several dielectric oxides like BaTiO3, Ba2TiO4, SrTiO3, PbTiO3, PbZrO3 etc. In addition we also discuss the synthesis of some transition metal (Mn and Cu) oxalate nanorods using the reverse-micellar route. These nanorods on decomposition provide a facile route to the synthesis of transition metal oxide nanoparticles. We discuss the size dependence of the dielectric and magnetic properties in some of the above oxides  相似文献   

19.
M. Neumann  K. Kuepper 《Surface science》2009,603(10-12):1613-1621
Transition metal oxides display uniquely rich physics. Phenomena like superconductivity or colossal magneto resistance are related to collective phase transitions as consequence of a fascinating interplay between the charge, orbital and spin degree of freedom with the crystal lattice. Understanding the underlying electronic properties of transition metal oxides is one major topic in nowadays condensed matter physics. In this paper the investigation of a number of transition metal oxides, with emphasis to ferroelectric and magnetic compounds, by means of different X-ray spectroscopic techniques is presented. X-ray spectroscopic techniques offer unique capabilities for the analysis of spatial distribution of the electron density and chemical bonding. A lot of results shown in this paper are compared to different theoretical electronic structure calculations, i.e. ab initio band structure calculations as well as full multiplet calculations.  相似文献   

20.
The presented scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) results show the strong reaction of Cr and V with the graphitic walls of MWCNTs. For Vanadium, an interfacial VC layer could be observed at the interface between VN and MWCNTs, when the samples were heated in situ to 750 °C. Knowledge about this interfacial VC layer is important for the formation of VN-MWCNT hybrid materials, used in supercapacitor electrodes, often synthesized at high temperatures. Chromium reacts at 500 °C with the MWCNTs to form Cr3C2 and in some cases, dissolved the MWCNT completely. Together with the previously published results about the interaction of MWCNTs with Cu (no interaction) and Ni (a slight rehybridisation trend for the outermost MWCNT-wall observed with EELS) (Ilari et al., 2015) the influence of the valence d-orbital occupancy of 3d transition metals on the interaction strength with CNTs is shown experimentally. For a transition metal to form chemical bonds towards CNT-walls, unoccupied states in its valence d-orbitals are needed. While Ni (2 unoccupied states) interacts only slightly, Cr (5 unoccupied states) and V (7 unoccupied states) react much stronger and can dissolve the MWCNTs, at least partially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号