首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Lectins represent a heterogeneous group of proteins/glycoproteins with unique carbohydrate specificity, with wide range of biomedical applications. The multi-step purification protocols generally used for purification of lectin result in a significant reduction in the final yield and activity. In the present study, Morus rubra lectin (MRL) was purified to homogeneity from the leaves using a single-step immobilized metal ion affinity chromatography (IMAC) procedure. The approximate molecular weight of purified MRL resolved as a single band on SDS-PAGE was 52?kDa. Final percentage yield of purified lectin by IMAC was calculated as 74.7?%. Purified MRL was specific to three sugars, galactose, d-galactosamine and N-acetyl-d-galactosamine, and rendered haemagglutination (HA) activity towards different human blood group RBCs. MRL showed stability over a wide range of temperature (up to 80?°C) and pH (4?C11). Chelation of the lectin with EDTA did not alter HA which indicates that metal ion is not required for activity. In the presence of Fe2+, Ca2+, Zn2+, Ni2+, Mn2+, Na+ and K+, HA activity was reduced to 50?%, whereas the presence of trivalent metal ions (Fe3+ and Al3+) and Cu2+ did not affect the activity. In the presence of Mg2+ and Hg2+, only 25?% of HA activity remained.  相似文献   

2.
Biophysical and carbohydrate binding studies have been carried out on a lectin of Spatholobus parviflorus (SPL) seeds isolated by affinity chromatography on cross-linked guar gum. It agglutinated erythrocytes of all ABO blood groups. SDS-PAGE, both in reducing and non-reducing conditions, showed two bands with MW of 29 and 31 kDa. MALDI TOF analysis revealed two peaks at 60 and 120 kDa, indicating that SPL is a hetero-dimeric tetramer. Temperature and pH stability studies revealed that SPL is a thermostable protein and its lectin activity is unaffected in the temperature range of 0–70 °C. Its activity was maximal in the pH range of 7–8. Unfolding studies with different denaturants like urea and guanidine hydrochloride indicated its globular nature and the presence of tryptophan in the highly hydrophobic area, which could be correlated to the results of fluorescence spectroscopic studies. The effect of carbohydrate binding on the lectin, shown by circular dichroism spectra, indicated the changes in its secondary and tertiary structures. SPL exerted anti-fungal activity against Aspergillus sp.  相似文献   

3.
Concerted functioning of lectins and carbohydrate‐processing enzymes, mainly glycosidases, is essential in maintaining life. It was commonly assumed that the mechanisms by which each class of protein recognizes their cognate sugar partners are intrinsically different: multivalency is a characteristic feature of carbohydrate–lectin interactions, whereas glycosidases bind to their substrates or substrate‐analogue inhibitors in monovalent form. Recent observations on the glycosidase inhibitory potential of multivalent glycomimetics have questioned this paradigm and led to postulate an inhibitory multivalent effect. Here the mechanisms at the origin of this phenomenon have been investigated. A D ‐gluco‐configured sp2‐iminosugar glycomimetic motif, namely 1‐amino‐5N,6O‐oxomethylydenenojirimycin (1N‐ONJ), behaving, simultaneously, as a ligand of peanut agglutinin (PNA) lectin and as an inhibitor of several glycosidases, has been identified. Both the 1N‐ONJ–lectin‐ and 1N‐ONJ–glycosidase‐recognition processes have been found to be sensitive to multivalency, which has been exploited in the design of a lectin–glycosidase competitive assay to explore the implication of catalytic and non‐glycone sites in enzyme binding. A set of isotropic dodecavalent C60‐fullerene–sp2‐iminosugar balls incorporating matching or mismatching motifs towards several glycosidases (inhitopes) was synthesized for that purpose, thereby preventing differences in binding modes arising from orientational preferences. The data supports that: 1) multivalency allows modulating the affinity and selectivity of a given inhitope towards glycosidases; 2) multivalent presentation can switch on the inhibitory capacity for some inhitope–glycosidase pairs, and 3) interactions of the multivalent inhibitors with non‐glycone sites is critical for glycosidase recognition. The ensemble of results point to a shift in the binding mode on going from monovalent to multivalent systems: in the first case a typical ′′key–lock′′ model involving, essentially, the high‐affinity active site can be assumed, whereas in the second, a lectin‐like behavior implying low‐affinity non‐glycone sites probably operates. The differences in responsiveness to multivalency for different glycosidases can then be rationalized in terms of the structure and accessibility of the corresponding carbohydrate‐binding regions.  相似文献   

4.
Lectins, proteins that recognize carbohydrates, have been immobilized on inert supports and used in the screening or purification of glycoproteins. Anacardium occidentale bark infusion has been used as a hypoglycemic agent in Brazil. The toxicity of natural products may be evaluated determining their capability to alter the biodistribution of technetium-99M (99mTc). This work reports the isolation and characterization of a lectin from A. occidentale bark (AnocBL), its evaluation as an affinity support for glycoprotein isolation and lectin effect on the uptake of 99mTc by rat adipocytes. AnocBL was isolated from 80?% ammonium sulphate supernatant by affinity chromatography on fetuin?Cagarose. SDS?CPAGE showed a single protein band of 47?kDa. The monossacharide l-arabinose and the glycoproteins fetuin, asialofetuin, ovomucoid, casein, thyroglobulin, peroxidase, fetal bovine serum and IgG inhibited the activity. The lectin activity was stable until 70?°C and at a pH range of 3.0?C7.5. AnocBL?CSepharose column bound fetuin indicating that the lectin matrix may be used to obtain glycoconjugates of biotechnological interest. In vitro assay revealed that glucose and insulin increase 99mTc uptake by rat adipocytes. AnocBL decreases 99mTc uptake, and this effect was not detected in the presence of glucose. Fetuin inhibited AnocBL effect in all insulin concentrations.  相似文献   

5.
Multivalent carbohydrate–protein interactions are frequently involved in essential biological recognition processes. Accordingly, multivalency is often also exploited for the design of high‐affinity lectin ligands aimed at the inhibition of such processes. In a previous study (D. Schwefel et al., J. Am. Chem. Soc. 2010 , 132, 8704–8719) we identified a tetravalent cyclopeptide‐based ligand with nanomolar affinity to the model lectin wheat germ agglutinin (WGA). To unravel the structural features of this ligand required for high‐affinity binding to WGA, we synthesized a series of cyclic and linear neoglycopeptides that differ in their conformational freedom as well as the number of GlcNAc residues. Combined evidence from isothermal titration calorimetry (ITC), enzyme‐linked lectin assays (ELLA), and dynamic light scattering (DLS) revealed different binding modes of tetra‐ and divalent ligands and that conformational preorganization of the ligands by cyclization is not a prerequisite for achieving high binding affinities. The high affinities of the tetravalent ligands rather stem from their ability to form crosslinks between several WGA molecules. The results illustrate that binding affinities and mechanisms are strongly dependent on the used multivalent system which offers opportunities to tune and control binding processes.  相似文献   

6.
A lectin has successfully been isolated from Phaseolus vulgaris cv. Chinese pinto bean using affinity chromatography, ion exchange chromatography, and gel filtration in succession, with a 15.4-fold purification. Investigation of its characteristics revealed that Chinese pinto bean lectin (CPBL) was a 58-kDa dimeric glucosamine-binding protein. Its Mg2+-dependent hemagglutinating activity was stable at pH 7–8 and at or below 60 °C. When the purified lectin was tested against six fungal species including Phyllosticta citriasiana, Magnaporthe grisea, Bipolans maydis, Valsa mali, Mycosphaerella arachidicola, and Setosphaeria turcica, only the mycelial growth of V. mali was reduced by 30.6 % by the lectin at 30 μM. The lectin did not exert any discernible antiproliferative effects on breast cancer MCF-7 cells, but was able to suppress proliferation of nasopharyngeal carcinoma HONE-1 cells, with an IC50 of 17.3 μM, as revealed by the MTT assay. Since few plant lectins demonstrate antifungal activity against V. mali, and not many others have inhibitory effects on HONE-1 cells, CPBL is a distinctive lectin which may be exploited for development into an agent against V. mali and HONE-1 cells.  相似文献   

7.
Human brain lectin (HBL), a beta-galactoside specific soluble lectin, was purified by affinity chromatography. An alkylated derivative of this lectin was also prepared. Both native and modified molecules were conserved at -20 degrees C in the presence or absence of beta-mercaptoethanol, a reducing agent which was described to maintain the lectin activity in vitro or in the presence of beta-mercaptoethanol and lactose. The impact of storage conditions, over one year, on the native and derivated lectins, was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing and titration curve, using the PhastSystem (Pharmacia). Western-blot analysis using an anti-HBL antibody and size-exclusion high performance liquid chromatography were used to complete the study. The subunit M(r)s were estimated before freezing (T0) and after three and twelve months (T3, T12). They were comparable for all preparations. In all samples tested, isoelectric focusing demonstrated the existence of at least three acidic proteins, with the pI ranging between 4.7-4.9. Titration curves clearly showed pH-dependent conformational changes, resulting in a panel of differently charged molecular species, some of which may be related to different oxidative states of the cysteine residues. We concluded that lectin can be stored at -20 degrees C for at least one year before use as a reagent since the modifications revealed by electrophoretic analysis do not alter the hemagglutination activity and carbohydrate binding properties. The immunoreactivity also remained unchanged.  相似文献   

8.
Fusarium oxysporum f. sp. lycopersici races 1, 2, and 3 deteriorate tomato crops since they cause a vascular wilt. Lectins are carbohydrate-binding proteins with hemagglutinating and antifungal activities. This work reports that Microgramma vacciniifolia rhizome lectin (MvRL) inhibits F. oxysporum f. sp. lycopersici race 3 growth (61 %) more intensely than of races 1 (55 %) and 2 (45 %). The hemagglutinating activity of MvRL was inhibited by glycoprotein preparations from mycelia of races 1, 2, and 3, and these data indicate that lectin carbohydrate-binding sites recognized glycosylated molecules from races. Inter-simple sequence repeat (ISSR) marker system showed that race 3 is genetically distinct from races 1 and 2, and thus the highest sensitiveness of F. oxysporum f. sp. lycopersici race 3 to MvRL may be due to molecular characteristics of this race.  相似文献   

9.
Two orthogonal, metal free click reactions, enabled to glycosylate ubiquitin and its mutant A28C forming two protein scaffolds with high affinity for BambL, a lectin from the human pathogen Burkholderia ambifaria. A new fucoside analogue, with high affinity with BambL, firstly synthetized and co-crystallized with the protein target, provided the insights for sugar determinants grafting onto ubiquitin. Three ubiquitin-based glycosides were thus assembled. Fuc-Ub, presented several copies of the fucoside analogue, with proper geometry for multivalent effect; Rha-A28C, displayed one thio-rhamnose, known for its ability to tuning the immunological response; finally, Fuc-Rha-A28C, included both multiple fucoside analogs and the rhamnose residue. Fuc-Ub and Fuc-Rha-A28C ligands proved high affinity for BambL and unprecedented immune modulatory properties towards macrophages activation.

Metal free click reactions used to glycosylate ubiquitin and its mutant A28C afforded two protein scaffolds with high affinity for Burkholderia ambifaria lectin (BambL).  相似文献   

10.
The aim of this work was to purify and partially characterize a mannose recognition lectin from Nile tilapia (Oreochromis niloticus) serum, named OniL. OniL was isolated through precipitation with ammonium sulfate and affinity chromatography (Concanavalin A–Sepharose 4B). In addition, we evaluated carbohydrate specificity, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) profiles, and in vitro immunomodulatory activity on mice splenocyte experimental cultures through cytotoxic assays and cytokine production. The ammonium sulfate fraction F2 showed the highest specific hemagglutinating activity (331) and was applied to affinity matrix. Adsorbed proteins (OniL) were eluted with methyl-α-d-mannopyranoside. OniL, a 17-kDa protein by SDS–PAGE constituted by subunits of 11 and 6.6 kDa, showed highest affinity for methyl-α-d-mannopyranoside and d-mannose. Immunological assays, in vitro, showed that OniL did not show cytotoxicity against splenocytes, induced higher IFN-γ production and lower IL-10 as well as nitrite release. In conclusion, OniL lectin was successfully purified and showed a preferential Th1 response in mice splenocytes.  相似文献   

11.
The trypsin-sensitive glycopeptides from cell surfaces of a multipotential murine haemopoietic cell line (DE) have been studied using serial lectin affinity chromatography on columns of immobilized lentil lectin (LCA), concanavalin A (Con A), and wheat-germ agglutinin (WGA). WGA-binding material consisted of glycopeptides that failed to bind to LCA and Con A. Step elution from the WGA-column with 0.01-, 0.1-, 0.5- and 1.0 M N-acetyl-D-glucosamine yielded four affinity classes of glycopeptide (WGA-W, WGA-I, WGA-S and WGA-SS respectively). WGA-W, WGA-I and WGA-S contained both alkali-stable (N-linked) and alkali-labile (O-linked) carbohydrate on high molecular weight glycopeptides. The WGA-SS fraction contained only N-linked carbohydrate. N-linked glycopeptides isolated from each WGA-binding class differed in molecular size, relative N-acetylneuraminic acid content and affinity for Ricinus communis 120 agglutinin. endo-beta-Galactosidase digestion showed that these glycopeptides contained polylactosamine-type glycans. Gel filtration profiles of the enzyme treated materials were different for each WGA-binding population suggesting variation in branching patterns and/or substitution with fucose residues. Affinity chromatography has shown that the WGA binding molecules are the major glycopeptide group at DE cell surfaces.  相似文献   

12.
Lignin polymers in bamboo (Phyllostachys pubescens) were decomposed into polyphenols at high temperatures and oxidized for the introduction of quinone groups from peroxidase extracted from bamboo shoots and catalysis of UV. According to the results of FT-IR spectra analysis, neutral proteases (NPs) can be immobilized on the oxidized lignin by covalent bonding formed by amine group and quinone group. The optimum condition for the immobilization of NPs on the bamboo bar was obtained at pH 7.0, 40 °C, and duration of 4 h; the amount of immobilized enzyme was up to 5 mg g?1 bamboo bar. The optimal pH for both free NP (FNP) and INP was approximately 7.0, and the maximum activity of INP was determined at 60 °C, whereas FNP presented maximum activity at 50 °C. The Km values of INP and FNP were determined as 0.773 and 0.843 mg ml?1, respectively; INP showed a lower Km value and Vmax, than FNP, which demonstrated that INP presented higher affinity to substrate. Compared to FNP, INP showed broader thermal and storage stability under the same trial condition. With respect to cost, INP presented considerable recycling efficiency for up to six consecutive cycles.  相似文献   

13.
C-type lectin receptor (CLR) carbohydrate binding proteins found on immune cells with important functions in pathogen recognition as well as self and non-self-differentiation are increasingly moving into the focus of drug developers as targets for the immune therapy of cancer autoimmune diseases and inflammation and to improve the efficacy of vaccines. The development of molecules with increased affinity and selectivity over the natural glycan binders has largely focused on the synthesis of mono and disaccharide mimetics but glycan array binding experiments have shown increased binding selectivity and affinity for selected larger oligosaccharides that are able to engage in additional favorable interactions beyond the primary binding site. Here, a platform for the rapid preparation and screening of N-glycan mimetics on microarrays is presented that turns a panel of complex glycan core structures into structurally diverse glycomimetics by a combination of enzymatic glycosylation with a nonnatural donor and subsequent cycloaddition with a collection of alkynes. All surface-based reactions were monitored by MALDI-TOF MS to assess conversion and purity of spot compositions. Screening the collection of 374 N-glycomimetics against the plant lectin WFA and the 2 human immune lectins MGL ECD and Langerin ECD produced a number of high affinity binders as lead structures for more selective lectin targeting probes.  相似文献   

14.
A conjugate composed of tetraaza[6.1.6.1]paracyclophane bearing carboxylic acids and lectin, a carbohydrate binding protein, was prepared. The specific saccharide-binding abilities as well as the secondary structural features of the lectin were not disturbed, when the cyclophane were covalently bound to the lectin. The conjugate was found to act as a water-soluble host for inclusion of anionic guest molecules such as 6-p-toluidino-naphthalene-2-sulfonate (TNS) and 8-anilinonaphthalene-1-sulfonate (ANS) in aqueous acetate buffer (pH 4.0) with binding constants of 4.2 × 104 and 1.5 × 104 dm3 mol−1, respectively. The obtained binding constants were much larger than those by untethered water-soluble cyclophane. A highly desolvated microenvironment was provided by the cyclophane cavity on the protein surfaces so that the tight host–guest interaction, which brought about the marked motional repression of the entrapped guests, became effective. The conjugate also showed molecular discrimination capabilities toward the anionic guests through electrostatic repulsion mechanism originating from acid-dissociation equilibrium of carboxylic acids of the cyclophane branches.  相似文献   

15.
A lectin was purified from the rhizomes of Curcuma amarissima Roscoe by aqueous extraction, fractionation with 80% saturated ammonium sulfate, and a combination of affinity and gel chromatography on ConA Sepharose and Superdex G-75, respectively. The molecular mass of the purified lectin was 32.4 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The lectin showed no significant specificity in its ability to hemagglutinate erythrocytes from human blood groups (A, B, AB, and O), but for other animals, it only agglutinated rabbit and rat, and not mouse, guinea pig, goose, and sheep erythrocytes. The lectin was stable at temperatures below 40°C, but the hemagglutinating activity halved when it was heated to 45–85°C and was completely lost at 95°C. The hemagglutinating activity was more stable at 80°C than at 70°C and was rapidly inactivated at 90°C. It showed a maximum hemagglutination activity within the pH range of 8.0–11.0. The deduced amino acid sequence of an internal tryptic peptide sequence of this purified lectin showed sequence similarity (homology) to other members of the leucoagglutinating phytohemagglutinin precursor family, whilst the complete lectin inhibited the in vitro growth of three plant pathogenic fungi, Fusarium oxysporum, Exserohilum turicicum, and Colectrotrichum cassiicola, at a concentration of 17.5 to 35 μg, and showed in vitro cytotoxicity against the BT474 breast cancer cell line with an IC50 of approximately 21.2 μg.  相似文献   

16.
Multivalent protein‐carbohydrate interactions are involved in the initial stages of many fundamental biological and pathological processes through lectin–carbohydrate binding. The design of high affinity ligands is therefore necessary to study, inhibit and control the processes governed through carbohydrate recognition by their lectin receptors. Carbohydrate‐functionalised gold nanoclusters (glyconanoparticles, GNPs) show promising potential as multivalent tools for studies in fundamental glycobiology research as well as biomedical applications. Here we present the synthesis and characterisation of galactose functionalised GNPs and their effectiveness as binding partners for PA‐IL lectin from Pseudomonas aeruginosa. Interactions were evaluated by hemagglutination inhibition (HIA), surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays. Results show that the gold nanoparticle platform displays a significant cluster glycoside effect for presenting carbohydrate ligands with almost a 3000‐fold increase in binding compared with a monovalent reference probe in free solution. The most effective GNP exhibited a dissociation constant (Kd) of 50 nM per monosaccharide, the most effective ligand of PA‐IL measured to date; another demonstration of the potential of glyco‐nanotechnology towards multivalent tools and potent anti‐adhesives for the prevention of pathogen invasion. The influence of ligand presentation density on their recognition by protein receptors is also demonstrated.  相似文献   

17.
Lectins comprise a heterogeneous class of proteins that recognize the carbohydrate moieties of glycoconjugates with high specificity. Numerous studies have shown that lectins are capable of recognizing specific carbohydrate moieties displayed by malignant cells or tissues. The present work was performed to investigate the effects of tepary bean (Phaseolus acutifolius) lectins on proliferation, colony formation, and alteration of DNA synthesis of human malignant cells. Tepary bean lectin showed dose dependent effects on the inhibition of viability as well as on colony formation in two human malignant cells lines (C33-A, Sw480); By contrast, tepary bean lectin only showed significant effects on DNA synthesis on Sw480 cells. Our results provide evidence of the anti- proliferative and cytotoxic effects of the tepary bean lectins on C33-A and Sw480 cells lines.  相似文献   

18.
The binding of heat stable enterotoxin (STa) secreted by enterotoxigenic Escherichia coli (ETEC) to the extracellular domain of guanylyl cyclase c (ECDGC-C) causes activation of a signaling cascade, which ultimately results in watery diarrhea. We carried out this study with the objective of finding ligands that would interfere with the binding of STa on ECDGC-C. With this view in mind, we tested the biological activity of a alkaloid rich fraction of Holarrhena pubescens against ETEC under in vitro conditions. Since this fraction showed significant antibacterial activity against ETEC, we decided to test the screen binding affinity of nine compounds of steroidal alkaloid type from Holarrhena pubescens against extracellular domain (ECD) by molecular docking and identified three compounds with significant binding energy. Molecular dynamics simulations were performed for all the three lead compounds to establish the stability of their interaction with the target protein. Pharmacokinetics and toxicity profiling of these leads demonstrated that they possessed good drug-like properties. Furthermore, the ability of these leads to inhibit the binding of STa to ECD was evaluated. This was first done by identifying amino acid residues of ECDGC-C binding to STa by protein–protein docking. The results were matched with our molecular docking results. We report here that holadysenterine, one of the lead compounds that showed a strong affinity for the amino acid residues on ECDGC-C, also binds to STa. This suggests that holadysenterine has the potential to inhibit binding of STa on ECD and can be considered for future study, involving its validation through in vitro assays and animal model studies.  相似文献   

19.
Multivalent receptor–ligand binding is a key principle in a plethora of biological recognition processes. Immense binding affinities can be achieved with the correct spatial orientation of the ligands. Accordingly, the incorporation of photoswitches, which can be used to reversibly change the spatial orientation of molecules, into multivalent ligands is a means to alter the binding affinity and possibly also the binding mode of such ligands. We report a divalent ligand for the model lectin wheat germ agglutinin (WGA) containing an arylazopyrazole photoswitch. This switch, which has recently been introduced as an alternative to the more commonly used azobenzene moiety, is characterized by almost quantitative E/Z photoswitching in both directions, high quantum yields, and high thermal stability of the Z isomer. The ligand was designed in a way that only one of the isomers is able to bridge adjacent binding sites of WGA leading to a chelating binding mode. Photoswitching induces an unprecedentedly high change in lectin binding affinity as determined by isothermal titration calorimetry (ITC). Furthermore, additional dynamic light scattering (DLS) data suggest that the binding mode of the ligand changes from chelating binding of the E isomer to crosslinking binding of the Z isomer.  相似文献   

20.
This work reports the isolation of a serum lectin from cobia fish (Rachycentron canadum) named RcaL. Immunomodulatory activity on mice splenocyte experimental cultures through cytotoxic assays and cytokine production were also performed. RcaL was obtained through precipitation with ammonium sulphate and affinity chromatography on a Concanavalin A-Sepharose 4B column. The ammonium sulphate fraction F3 showed the highest specific hemagglutinating activity and was applied to affinity chromatography. The lectin was eluted with methyl-α-d-mannopyranoside. RcaL showed highest affinity for methyl-α-d-mannopyranoside and d-mannose; eluted fractions of RcaL agglutinated rabbit erythrocytes (titre, 128?1) retained 66 % of chromatographed lectin activity, and the obtained purification factor was 1.14. Under reducing conditions, a polypeptide band of 19.2 kDa was revealed in sodium dodecyl sulphate polyacrylamide gel electrophoresis (PAGE). PAGE confirmed RcaL as an acidic protein revealed in a single band. Cytotoxic and immunomodulatory assays with RcaL in mice splenocyte cultures showed that the lectin was not cytotoxic and induced higher interferon gamma and nitric oxide production in splenocyte cultures. Purified RcaL induced preferential Th1 response, suggesting that it acts as an immunomodulatory compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号