首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
近年来,国内外对壳聚糖在生物医学领域的应用研究十分活跃。壳聚糖在低pH时带正电荷,在溶液中可与带负电荷的聚离子形成聚电解质复合物。壳聚糖基聚电解质复合物除了具有壳聚糖的生物相容性,还表现出良好的物理化学性质,在药物控制释放体系、蛋白质分离、生物酶以及细胞固定化等领域具有广泛应用。本文重点介绍壳聚糖与几种天然的或合成的聚阴离子形成的聚电解质复合物及其在生物医学领域的应用。  相似文献   

2.
近年来,有关生物分子通过液-液相分离机制进行组织定位、功能调控的研究发展迅速。相分离产生的聚集体在众多细胞活动事件中发挥了关键作用。这些聚集体的生物功能是以相分离的物理化学性质为基础的。本文将从相分离聚集体的基本性质、相图、微观结构,相分离的统计热力学、实验和分子模拟研究等方面阐释相分离物理化学机制研究相关进展。对于生物分子相分离的重要功能体系进行了列举和归纳,收集了相分离研究的模式体系,探讨了生物分子相分离的生物功能同物理化学机制之间的关系,总结了生物分子相分离的调控机制和调控分子的设计方法,并对生物分子相分离物理化学机制研究的未来发展方向进行了展望。  相似文献   

3.
Although biopolymers and synthetic polymers share many common features, each of these two classes of materials is also characterized by a distinct and very specific set of advantages and disadvantages. Combining biopolymer elements with synthetic polymers into a single macromolecular conjugate is an interesting strategy for synergetically merging the properties of the individual components and overcoming some of their limitations. This article focuses on a special class of biological–synthetic hybrids that are obtained by site‐selective conjugation of a protein or peptide and a synthetic polymer. The first part of the article gives an overview of the different liquid‐phase and solid‐phase techniques that have been developed for the synthesis of well‐defined, that is, site‐selectively conjugated, synthetic polymer–protein hybrids. In the second part, the properties and potential applications of these materials are discussed. The conjugation of biological and synthetic macromolecules allows the modulation of protein binding and recognition properties and is a powerful strategy for mediating the self‐assembly of synthetic polymers. Synthetic polymer–protein hybrids are already used as medicines and show significant promise for bioanalytical applications and bioseparations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1–17, 2005  相似文献   

4.
The knowledge on the factors affecting the heat-induced physicochemical changes of milk proteins and milk protein stabilized oil-in-water emulsions has been advanced for the last decade. Most of the studies have emphasized on the understanding of how milk-protein-stabilized droplets and the non-adsorbed proteins determine the physicochemical and rheological properties of protein-concentrated dairy colloids. The physical stability of concentrated protein-stabilized emulsions (i.e., against creaming or phase separation/gelation after heat treatment) can be modulated by carefully controlling the colloidal properties of the protein-stabilized droplets and the non-adsorbed proteins in the aqueous phase. This article focusses on the review of the physical stability of concentrated milk protein-stabilized oil-in-water emulsions as influenced by physicochemical factors, interparticle interactions (i.e., protein–protein, and droplet–droplet interactions) and processing conditions. Emphasis has been given to the recent advances in the formation, structure and physical stability of oil-in-water emulsions prepared with all types of milk proteins, reviewing in particular the impact of pre- and post-homogenization heat treatments. In addition, the importance of common components found in the continuous phase of heat-treated nutritional emulsions that can promote aggregation (polymers, sugars, minerals) will be highlighted. Finally, the routes of manipulating the steric stabilization of these emulsions to control heat-induced aggregation—through protein–surfactant, protein–protein, protein–polysaccharide interactions and through the incorporation of protein based colloidal particles—are reviewed.  相似文献   

5.
The effect of polyelectrolyte addition on the properties of an oil-in-water (O/W) microemulsion of weakly charged spherical micelles is studied. The 81 A radius O/W droplets in this system can be charged by the partial substitution of the nonionic surfactant by a cationic surfactant. The effect of the addition of poly(acrylic acid) (PAA), which is a charged pH-dependent polyelectrolyte, on the interactions between charged or noncharged droplets has been investigated using SANS. We have characterized the phase behavior of this pH-smart system as a function of the microemulsion and the polyelectrolyte concentration and the number of charges per droplet at three pH values: pH = 2, 4.5, and 12. In particular, an associative phase separation due to the bridging of the droplets by the neutral PAA chains through H-bonds is observed with extremely low PAA addition at low pH. At the opposite, an addition of PAA at pH = 4.5 generates a strong repulsive contribution between neutral droplets. Electrostatic bonds between charged droplets and PAA, controlled by the number of charges per droplet, are responsible for a pH drift and then for an associative phase separation similar to that observed at low pH. Finally, at high pH, the creation of electrostatic bonds between fully charged PAA and charged droplets liberates sufficiently counterions in solution at high droplet charge density to screen the electrostatic interactions and to allow an associative phase separation.  相似文献   

6.
A continued interest in polyelectrolyte phase diagrams guides the study of interfacial phenomena driven by polyelectrolyte complexation. The liquid–liquid interfaces formed by associative phase separation of oppositely charged synthetic and natural polyelectrolytes provide measurement challenges addressed by force-sensitive methods and deformed droplet retraction. The ultralow interfacial tension, typical of these systems, is sensitive to salt concentration and temperature and displays universal features described by mean-field theory. Several areas of fundamental development and novel applications of charge complexation for interfacial study and examples from membraneless organelles and biomolecular condensates are described.  相似文献   

7.
A new type of phase separation in the polyelectrolyte solutions consisting of several types of charged macromolecules differing in their degree of ionization is presented. Via a general thermodynamic consideration we show that even a small difference in the degree of ionization of otherwise equivalent high‐molecular components results in their spatial separation occurring upon decreasing the temperature much earlier than precipitation of any of the pure components from the solution. Some implications of charge fractionation are discussed, including the separation of DNA (or RNA) strands interacting with different proteins and the appearance of heterogeneities in polyelectrolyte solutions of partially charged hydrophobic chains with polydispersed charge distributions such as sodium polystyrene sulfonate. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3003–3009, 2007  相似文献   

8.
Aqueous solutions of proteins and oppositely charged polyelectrolytes were studied at different polyelectrolyte chain length, ionic strength, and protein-protein interaction potential as a function of the polyelectrolyte concentration. One of the protein models used represented lysozyme in aqueous environment. The model systems were solved by Monte Carlo simulations, and their properties were analyzed in terms of radial distribution functions, structure factors, and cluster composition probabilities. In the system with the strongest electrostatic protein-polyelectrolyte interaction the largest clusters were formed near or at equivalent amount of net protein charge and polyelectrolyte charge, whereas in excess of polyelectrolyte a redissolution appeared. Shorter polyelectrolyte chains and increased ionic strength lead to weaker cluster formation. An inclusion of nonelectrostatic protein-protein attraction promoted the protein-polyelectrolyte cluster formation.  相似文献   

9.
Liu KL  Hsu JP  Hsu WL  Yeh LH  Tseng S 《Electrophoresis》2012,33(6):1068-1078
The diffusiophoresis of a polyelectrolyte subject to an applied salt concentration gradient is modeled theoretically. The entirely porous type of particle is capable of simulating entities such as DNA, protein, and synthetic polymeric particles. The dependence of the diffusiophoretic behavior of the polyelectrolyte on its physical properties, and the types of ionic species and their bulk concentrations are discussed in detail. We show that in addition to the effects coming from the polarization of double layer and the difference in the ionic diffusivities, the polarization of the condensed counterions inside the polyelectrolyte might also be significant. The last effect, which has not been reported previously, reduces both the electric force and the hydrodynamic force acting on the polyelectrolyte. Both the direction and the magnitude of the diffusiophoretic velocity of the polyelectrolyte are found to highly depend upon its physical properties. These results provide valuable references for applications such as DNA sequencing and catalytic nano- or micromotors.  相似文献   

10.
Because polyelectrolytes are perhaps the least understood form of soft synthetic matter, polyelectrolyte brushes are important model systems for learning how chain stretching is controlled by conditions that set the charge state of the system, as well as interactions with biological and bio-inspired molecules. Motivated by this fact, we describe situations where the application of neutron reflectivity to the study of polyelectrolyte brushes is poised to deepen understanding of the complex connections between charge and nanostructure. This theme is especially pertinent because the nanoscale structure dictates interactions across interfaces.  相似文献   

11.
The concept of microphase separation was up to now widely applied mainly to the conformational transitions in block-copolymer solutions and melts. However, recently it became obvious that this concept has a much more general meaning. It was shown that microphase separation transition can be observed in random copolymers, interpenetrating polymer networks, polyelectrolyte mixtures, poor solvent polyelectrolyte solutions, ionomer solutions and melts, polymer blends and solutions with nonlocal entropy of mixing. In all these examples the emerging microdomain structures correspond to the nanometer scale, therefore the study of these effects can lead to the new ways of obtaining polymer materials with controlled nano-microstructure. In this presentation the review of our recent findings on microphase separation in some of the above-mentioned systems will be presented. 1. The problem of microphase separation in the systems containing weakly charged polyelectrolytes (polyelectrolyte mixtures and poor solvent polyelectrolyte solutions) will be considered. From the methodic point of view, it will be shown that this problem can be solved by direct minimization of the free energy, without the use of “weak segregation” or “strong segregation” assumptions which are common in the theory of block-copolymers. The final phase diagrams exhibit wide macroscopic phase separation regions, which is their main difference from the corresponding phase diagrams for block-copolymer systems. The formation of microdomains is thus coupled with macroscopic phase separation: in most of the cases microdomain structure is formed in one of the coexisting phases after macroscopic phase separation takes place [1] - [2]. 2. The formation of the multiplet structure in ionomer melts and solutions can be also considered as the microphase separation in the random copolymer system with the formation of the “micelles” (or clusters) of ionic links. The parallels with micelle formation in block-copolymer systems can be established if one considers a new “superstrong segregation regime” for block-copolymer microstructures. This regime can be indeed observed for diblock copolymers with one ionomeric and one neutral block [3]. 3. The microphase separation transition in ordinary polymer blends and solutions is also possible. The conditions for this effect are: (i) significant entropic contribution to polymer/polymer or polymer/solvent miscibility, (ii) the nonlocal character of this contribution with a high value of the nonlocality radius. It is argued that one can expect that the entropy nonlocality radius increases in the vicinity of the glass transition for the blend or polymer solutions (in the latter case solvent molecules act like “poor solvent plasticisers”). Computer simulation data supporting the theoretical prediction of microphase separation transition in these systems will be presented [4] - [5].  相似文献   

12.
Temperature‐induced phase separation of poly(N‐isopropylacrylamide) in aqueous solutions was studied by attenuated total reflectance (ATR)/Fourier transform infrared spectroscopy. The main objectives of the study were to understand, on a molecular level, the role of hydrogen bonding and hydrophobic effects below and above the phase‐separation temperature and to derive the scenario leading to this process. Understanding the behavior of this particular system could be quite relevant to many biological phenomena, such as protein denaturation. The temperature‐induced phase transition was easily detected by the ATR method. A sharp increase in the peaks of both hydrophobic and hydrophilic groups of the polymer and a decrease in the water‐related signals could be explained in terms of the formation of a polymer‐enriched film near the ATR crystal. Deconvolution of the amide I and amide II peaks and the O? H stretch envelope of water revealed that the phase‐separation scenario could be divided, below the phase‐separation temperature, into two steps. The first step consisted of the breaking of intermolecular hydrogen bonds between the amide groups of the polymer and the solvent and the formation of free amide groups, and the second step consisted of an increase in intramolecular hydrogen bonding, which induced a coil–globule transition. No changes in the hydrophobic signals below the separation temperature could be observed, suggesting that hydrophobic interactions played a dominant role during the aggregation of the collapsed chains but not before. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1665–1677, 2001  相似文献   

13.
Here, we report that carboxylated poly‐l ‐lysine, a polyampholyte, shows lower critical solution temperature (LCST)‐type temperature‐responsive liquid–liquid phase separation and coacervate formation in aqueous solutions. The phase‐separation temperature of polyampholytes is strongly affected by the polymer concentration, balance between the carboxyl and amino groups, hydrophobicity of the side chain, and NaCl concentration in the solution. We concluded that the phase separation was caused by both electrostatic interactions between the carboxyl and amino groups and intermolecular hydrophobic interactions. The addition of NaCl weakened the electrostatic interactions, causing the two phases to remix. The introduction of the hydrophobic moiety decreased the phase‐separation temperature by making the molecular interactions stronger. Finally, temperature‐responsive hydrogels were prepared from the polyampholytes to explore their applicability as biomaterials and in drug delivery systems. The fine‐tuning of the phase‐separation temperature of poly‐l ‐lysine‐based polyampholytes through molecular design should open new avenues for their use in precisely controlled biomedical applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 876–884  相似文献   

14.
When oppositely charged polyelectrolytes are mixed in water, attraction between oppositely charged groups may lead to the formation of polyelectrolyte complexes (associative phase separation, complex coacervation, interpolymer complexes). Theory is presented to describe the electrostatic free energy change when ionizable (annealed) (macro-)molecules form a macroscopic polyelectrolyte complex. The electrostatic free energy includes an electric term as well as a chemical term that is related to the dissociation of the ionic groups in the polymer. An example calculation for complexation of polyacid with polybase uses a cylindrical diffuse double layer model for free polymer in solution and electroneutrality within the complex and calculates the free energy of the system when the polymer is in solution or in a polyelectrolyte complex. Combined with a term for the nonelectrostatic free energy change upon complexation, a theoretical stability diagram is constructed that relates pH, salt concentration, and mixing ratio, which is in qualitative agreement with an experimental diagram obtained by Bungenberg de Jong (1949) for complex coacervation of arabic gum and gelatin. The theory furthermore explains the increased tendency toward phase separation when the polymer becomes more strongly charged and suggests that complexation of polyacid or polybase with zwitterionic polymer (e.g., protein) of the same charge sign (at the "wrong side" of the iso-electric point) may be due (in part) to an induced charge reversal of the protein.  相似文献   

15.
One of the biggest challenges in the field of nanomedicine is the adsorption of biomolecules on the nanomaterial upon contact with a biological medium. The interactions of the resulting protein corona are essential for their behavior in a biological system. Thus, it is now commonly accepted that understanding the formation and consequently understanding the influence of the protein corona on the biological response is crucial. However, the outcome of the protein corona characterization cannot easily be compared between different studies and techniques, since many different sample preparation procedures exist that are suitable for different materials or methods. Depending on the applied procedure, the nanomaterial–protein system will be altered in a certain way, so that it is necessary to consider the individual influence on the protein corona. Accordingly, the aim of this Minireview is to give an overview of the applied sample preparation methods for the analysis of the protein corona and to evaluate their influence on the outcome of the results especially with regard to the introduced terms “soft” and “hard protein corona”. Special focus will be placed on the comparison of the most commonly used techniques such as centrifugation, magnetic, and chromatographic separation.  相似文献   

16.
The competition of interactions between charged groups of polyanions and polycations and their interaction with small counterions strongly affect the formation and stability of polyelectrolyte multilayers. This has consequences for the properties of polyelectrolyte multilayers like mechanics, polymer mobility and swelling in water.  相似文献   

17.
Cells organize their interior through membrane-bound organelles and through membraneless condensates that are formed by liquid–liquid phase separation (LLPS). The complex process of coacervation that is involved in LLPS is challenging to study in living cells. Hence, studying coacervation in cell-mimicking synthetic containers can yield valuable insights. Here, we review recent progress with respect to studying LLPS (particularly coacervation) in artificial compartments, from water-in-oil droplets to membranous liposomes. We describe different strategies to form and control coacervates in microconfinements and to study their physicochemical and biological characteristics. We also describe how coacervation can itself be used in container formation. This review highlights the importance of in vitro coacervate studies for understanding cellular biology and for designing synthetic cells.  相似文献   

18.
The effect of low ionic strength leading to reduced polyelectrolyte–protein interactions has been shown by in silico and in vitro experiments, suggesting polyelectrolyte rigidity increasing at low ionic strength, thus leading to reduced interactions with proteins. This contribution elucidates polyelectrolyte–protein precipitation in the 0–2.6-mS?cm?1 ionic strength regime with polyelectrolyte rigidity determinations, using viscosimetry at these conditions, also considering protein charge distributions, using different proteins. Precipitation yields increased from 5 to 40 % at low ionic strength to up to 90 % at intermediate ionic strength, depending on protein and polyelectrolyte type, using lysozyme and three different monoclonal antibodies. Comparing precipitation behavior of the monoclonal antibodies, a qualitative correlation between required polyelectrolyte flexibility to enhance protein precipitation and protein average charge as well as hydrophobicity of the antibodies was discovered. Antibodies with lower average charge and less hydrophobicity required more flexible polyelectrolytes to enhance precipitation behavior by allowing interaction of the polyelectrolytes with proteins, attaching to positively charged protein patches while “circumnavigating” negatively charged protein areas. In contrast, antibodies with higher protein average charge showed increasing precipitation yields up to 90 % already at lower ionic strength, associated with then more rigid polyelectrolyte structures. Therefore, designing polyelectrolytes with specific chain flexibility could help to improve precipitation behavior toward specific target proteins in polyelectrolyte-driven purification techniques.  相似文献   

19.
Polyelectrolyte complex coacervation is a process that has been proposed as a model for protocell formation due to its ability to compartmentalize chemicals in solution without a membrane. During the liquid–liquid phase separation that results in water rich and polyelectrolyte rich phases, small molecules present in solution selectively partition to one phase over the other. This sequestration is based on relative affinities. Here, a study of the sequestration of methylene blue (MB) into the complex coacervate phase of three pairs of synthetic polyelectrolytes is presented; branched polyethylene imine with polyacrylic acid, polyvinyl sulfonate, or poly(4‐styrenesulfonic acid). These materials are characterized with UV–vis, zeta potential measurements, and dynamic light scattering. The branched polyethylene imine/poly(4‐styrenesulfonic acid) system is shown to have a significantly higher sequestration capacity for the MB as compared to either of the other two systems, based on π–π interactions which are not possible in the other systems.

  相似文献   


20.
Capillary-channeled polymer (C-CP) fibers extruded from nylon-6 are used as the stationary phase for the ion-exchange/reversed-phase mixed-mode chromatographic separation of a three protein mixture. The nylon-6 C-CP fibers are packed collinearly in a 250 x 1.5-mm i.d. column with an interstitial fraction of approximately 0.6. The effects of four displacing salts at three different pHs are studied with regards to protein retention time, peak width, selectivity, and resolution for a synthetic mixture consisting of myoglobin, ribonuclease A, and lysozyme to determine the optimum mobile phase conditions. The net charge model is found to be inadequate in fully explaining the retention behavior, as the proteins are retained by anion and cation-exchange interactions, as well as hydrophobic interactions with the stationary phase. It is found that pH and displacing salt strength had a significant influence on the retention properties and resolution of the proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号