首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
In this study, hemp seed oil (HSO) emulsions stabilized with hemp seed protein (HPI) were prepared and treated with high intensity ultrasonic (HIU). The effects of different treatment powers (0, 150, 300, 450, 600 W) on the properties, microstructure and stability of emulsions were investigated. HIU-treated emulsions showed improved emulsifying activity index and emulsifying stability index, reduced particle size, and increased absolute values of ζ-potential, with the extreme points of these indices occurring at a treatment power of 450 W. Here, the emulsion showed the best dispersion and the smallest particle size in fluorescence microscopy observation, with the highest adsorbed protein content (30.12%), and the highest tetrahydrocannabinol (THC) retention rate (87.64%). The best thermal and oxidative stability of the emulsions were obtained under HIU treatment with a power of 450 W. The D43 and the peroxide values (POV) values after 30 d storage were the smallest at 985.74 ± 64.89 nm and 4.6 μmol/L, respectively. Therefore, 450 W was optimal HIU power to effectively improve the properties of HPI-stabilized HSO emulsion and promote the application of HSO and its derivatives in food processing production.  相似文献   

2.
The aim of the paper was to investigate the effect of ultrasonic emulsification treatment on the fabrication mechanism and stability of the emulsion. The covalent conjugate made with rice bran protein hydrolysate (RBPH) and ferulic acid (FA) was used as the emulsifier. The effects of high intensity ultrasound (HIU) power with different level (0 W, 150 W, 300 W, 450 W and 600 W) on the stability of emulsion were evaluated. The results showed that ultrasonic emulsification can significantly improve the stability of the emulsions (p < 0.05). The emulsion gained better stability and emulsifying property at 300 W. It was able to fabricate emulsion with smaller particle size, more uniform distribution and higher interfacial protein content. It was confirmed by fluorescent microscopy and cryo-scanning electron microscopy (cryo-SEM) furtherly. And it was also proved that the emulsion treated by proper HIU treatment at 300 W had better storage stability. Excessive HIU treatment (450 W, 600 W) had negative effects on the stability of emulsion. The stability of emulsion (300 W) against different environmental stresses was further explored, which established a theoretical basis for the industrial application of emulsion in food industry.  相似文献   

3.
In this study, an emulsion stabilized by soy protein isolate (SPI)-pectin (PC) complexes was prepared to investigate the effects of high-intensity ultrasound (HIU) treatment (150–600 W) on the physicochemical properties, microstructure, and stability of emulsions. The results found that the emulsion treated at 450 W showed the best emulsion stability index (ESI) (25.18 ± 1.24 min), the lowest particle size (559.82 ± 3.17 nm), the largest ζ-potential absolute value (16.39 ± 0.18 mV), and the highest adsorbed protein content (27.31%). Confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) revealed that the emulsion aggregation was significantly improved by ultrasound treatment, and the average roughness value (Rq) was the smallest (10.3 nm) at 450 W. Additionally, HIU treatment reduced the interfacial tension and apparent viscosity of the emulsion. Thermal stability was best when the emulsion was treated at 450 W, D43 was minimal (907.95 ± 31.72 nm), and emulsion separation also improved. Consequently, the creaming index (CI) was significantly decreased compared to the untreated sample, indicating that the storage stability of the emulsion was enhanced.  相似文献   

4.
A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.  相似文献   

5.
In this study, the three-dimensional network system formed by rice bran wax (RBW) was used as the internal structure, and the external structure formed by soybean protein isolate (SPI) and phosphatidylserine (PS) was added on the basis of the internal structure to prepare walnut oil oleogel (SPI-PS-WOG). Ultrasonic treatment was applied to the mixed solution to make SPI-PS-WOG, on the basis, the effects of ultrasonic treatment on SPI-PS-WOG were investigated. The results showed that both β and β’ crystalline forms were present in all SPI-PS-WOG samples. When the ultrasonic power was 450 W, the first weight loss peak in the thermogravimetric (TGA) curve appeared at 326 °C, which was shifted to the right compared to the peak that occurred when the ultrasonic power was 0 W, indicating that the thermal stability of the SPI-PS-WOG was improved by the ultrasonic treatment. Moreover, when the ultrasonic power was 450 W, the oil holding capacity (OHC) reached 95.3 %, which was the best compared with other groups. Both confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the ultrasonic treatment of appropriate power succeeded in making the SPI-PS-WOG samples more evenly dispersed in the internal structure and denser in the external structure. In terms of oxidative stability, it was found that the peroxide value of SPI-PS-WOG remained at 9.8 mmol/kg oil for 50 days under 450 W ultrasonic power treatment, which was significantly improved compared with liquid walnut oil (WO). These results provide a new idea for the preparation of oleogels, and also lay a theoretical foundation for the application of ultrasonic treatment in oleogels.  相似文献   

6.
Ultrasonic-assisted treatment is an eco-friendly and cost-effective emulsification method, and the acoustic cavitation effect produced by ultrasonic equipment is conducive to the formation of stable emulsion. However, its effect on the underlying stability of low-molecular-weight oyster peptides (LOPs) functional-nutrition W1/O/W2 double emulsion has not been reported. The effects of different ultrasonic power (50, 75, 100, 125, and 150 W) on the stability of double emulsions and the ability to mask the fishy odor of LOPs were investigated. Low ultrasonic power (50 W and 75 W) treatment failed to form a well-stabilized double emulsion, and excessive ultrasound treatment (150 W) destroyed its structure. At an ultrasonic power of 125 W, smaller particle-sized double emulsion was formed with more uniform distribution, more whiteness, and a lower viscosity coefficient. Meanwhile, the cavitation effect generated by 125 W ultrasonic power improved storage, and oxidative stabilities, emulsifying properties of double emulsion by reducing the droplet size and improved sensorial acceptability by masking the undesirable flavor of LOPs. The structure of the double emulsion was further confirmed by optical microscopy and confocal laser scanning microscopy. The ultrasonic-assisted treatment is of potential value for the industrial application of double emulsion in functional-nutrition foods.  相似文献   

7.
In this study, rice bran protein–chlorogenic acid (RBP–CA) emulsion was subjected to an ultrasonic-assisted treatment technique. The encapsulation efficiency and loading capacity of chlorogenic acid (CA), and the morphology, particle size, zeta (ζ)-potential, atomic force microscopy image, viscosity, turbidity, and interfacial protein content of the emulsion under different ultrasonic power were investigated. The results revealed that the emulsion exhibited an encapsulation efficiency and loading capacity of 86.26 ± 0.11% and 17.25 ± 0.06 g/100 g, respectively, at an ultrasonic power of 400 W. In addition, the size of the emulsion droplets decreased and became more evenly distributed. Furthermore, the viscosity of the emulsion decreased significantly, and it exhibited a turbidity and interfacial protein content of 24,758 and9.34 mg/m2, respectively. Next, the storage, oxidation, thermal, and salt ion stabilities of the emulsion were evaluated. The results revealed that the ultrasonic-assisted treatment considerably improved the stability of the emulsion.  相似文献   

8.
In this study, soybean protein isolate (SPI) and pectin emulsion gels were prepared by thermal induction, and the effects of high intensity ultrasound (HIU) at various powers (0, 150, 300, 450 and 600 W) on the structure, gel properties and stability of emulsion gels were investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that the interaction between SPI and pectin was enhanced and the crystallinity of the emulsion gels was changed due to the HIU treatment. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) observations revealed that the particle size of the emulsion gels was decreased significantly by HIU treatment. The emulsion gel structure became more uniform and denser, which was conducive to storage stability. In addition, according to the low field nuclear magnetic resonance (LF-NMR) analysis, HIU treatment had no obvious impact on the content of bound water as the power increased to 450 W, while the content of free water decreased gradually and became immobilized water, which indicated that the water holding capacity of the emulsion gels was enhanced. Compared with untreated emulsion gel, differential scanning calorimetry (DSC) analysis showed that the denaturation temperature reached 131.9 ℃ from 128.2 ℃ when treated at 450 W. The chemical stability and bioaccessibility of β-carotene in the emulsion gels were improved significantly after HIU treatment during simulated in vitro digestion.  相似文献   

9.
The primary objective of the present study was to investigate the effectiveness of ultrasonic treatment time on the particle size, molecular weight, microstructure and solubility of milk fat globule membrane (rich in phospholipid, MPL) and milk protein concentrate (MPC). The mimicking human fat emulsions were prepared using modified proteins and compound vegetable oil and the structural, emulsifying properties and encapsulation efficiency of emulsions were evaluated. After ultrasonic treatment, the cavitation caused particle size decreased and structure change of both MPL and MPC, resulting in the enhancement of protein solubility. While, there was no significant change in molecular weight. Modified proteins by ultrasonic may cause a reduction in particle size and an improvement in emulsifying stability and encapsulation efficiency of emulsions. The optimal ultrasonic time to improve functional properties of MPL emulsion and MPC emulsion were 3 min and 6 min, respectively. The emulsifying stability of MPL emulsion was superior to MPC emulsion, which indicated that MPL is more suitable as membrane material to simulate human fat. Therefore, the obtained results can provide basis for quality control of infant formula.  相似文献   

10.
An ultrasonic technique was applied to preparation of two-phase water-in-oil (W/O) emulsified fuel of water/diesel oil/surfactant. In this study, an ultrasonic apparatus with a 28 kHz rod horn was used. The influence of the horn tip position during ultrasonic treatment, sonication time and water content (5 or 10 vol%) on the emulsion stability, viscosity, water droplet size and water surface area of emulsion fuels prepared by ultrasonication was investigated. The emulsion stability of ultrasonically-prepared fuel significantly depended on the horn tip position during ultrasonic irradiation. It was found that the change in the stability with the horn tip position was partly related to that in the ultrasonic power estimated by calorimetry. Emulsion stability, viscosity and sum of water droplets surface area increased and water droplet size decreased with an increase in sonication time, and they approached each limiting value in the longer time. The maximum values of the viscosity and water surface area increased with water content, while the limiting values of the emulsion stability and water droplet size were almost independent of water content. During ultrasonication of water/diesel oil mixture, the hydrogen and methane were identified and the cracking of hydrocarbon components in the diesel oil occurred. The combustion characteristics of ultrasonically-prepared emulsion fuel were studied and compared with those of diesel oil. The soot and NOx emissions during combustion of the emulsified fuel with higher water contents were significantly reduced compared with those during combustion of diesel oil.  相似文献   

11.
Rice protein hydrolysates (RPH) are incapable of film formation by self-crosslinking due to low molecular mass. Hence, we used chitosan (CS) as a modifier and developed rice protein hydrolysates/chitosan (RPH/CS) edible composite films by means of ultrasound. Results showed that ultrasound treatment decreased the particle size and the viscosity of film-forming solutions. The value of elongation at break of composite films was increased by 125% at 400 W compared with untreated film. The peroxide value of soybean oil was significantly reduced from 16.99 ± 0.78 meq/kg to 2.23 ± 0.09 meq/kg with the increase of ultrasonic power. Ultrasound treatment was efficient in keeping smooth on surface, and the films at ultrasound treatment of 200 W had better compatibility. Moreover, hydrogen bonds and covalent interactions were probably the main forces between RPH and CS and contributed to film formation under ultrasound treatment, which supported by analyses of Fourier transform infrared spectroscopy and X-ray diffraction. These results suggested that ultrasound was an effective method to improve the properties of edible composite films.  相似文献   

12.
This study aimed to prepare an emulsion stabilised by an ultrasound-treated casein (CAS)-hyaluronic acid (HA) complex and to protect vitamin E during in vitro digestion. It was found that high-intensity ultrasound (HIU) treatment significantly changed the hydrogen bonding, electrostatic interaction and hydrophobic interaction between CAS and HA, reduced the particle size of the CAS-HA complex, increased the intermolecular electrostatic repulsion, and thus significantly improved the emulsifying properties of the CAS-HA complex. Meanwhile, the creaming index (CI) and confocal laser scanning microscopy images showed that the stability of the CAS-HA-stabilised emulsion was the best when treated at 150 W for 10 min, which could be attributed to the enhanced adsorption capacity of the CAS-HA complex at the oil–water interface and the viscosity of the formed emulsion. In vitro digestion experiments revealed that the emulsion stabilised by the ultrasound-treated CAS-HA complex had a good protective effect on vitamin E. This study is significant for the development of emulsions for the delivery of lipophilic nutrients.  相似文献   

13.
It is essential to understand the ultrasound-induced changes in assembly of proteins and polyphenols into non covalent nanocomplex. β-Lactoglobulin (LG) and chlorogenic acid (CA) with various biological activities can be combined to form food-grade nanocomplexes. This study systematically explored the role of high-intensity ultrasound pretreatment on the binding mechanisms of LG and CA, and the potential biological function for embedding curcumin (Cur). The scanning electron microscopy (SEM) revealed that ultrasound treatment could destroy the structure of LG, and the particle size of the protein was reduced to<50 nm. The change in secondary structure of the protein by ultrasound treatment could be revealed by the fourier transform infrared (FTIR) and fluorescence spectra. Besides, it was found that LG and CA were combined to form a complex under the hydrophobic interaction, and CA was bound in the internal cavity of LG with a relatively extended conformation. The result demonstrated that the ratio of Cur embedded in the ultrasonic sample could be effectively increased by 7% − 10%, the particle size in the emulsion was smaller, and the dispersion was more stable. This work contributes to the development of protein–polyphenol functional emulsion systems with the ability to deliver Cur.  相似文献   

14.
In this study, scallop mantle protein was treated by ultrasound at different powers, and then analyzed by ANS fluorescent probes, circular dichroism spectroscopy, endogenous fluorescence spectrum, DNTB colorimetry and in-vitro digestion model to elucidate the structure–function relationship. The results indicated that ultrasound can significantly affect the secondary structure of scallop mantle protein like enhancing hydrophobicity, lowering the particle size, increasing the relative contents of α-helix and decreasing contents of β-pleated sheet, β-turn and random coil, as well as altering intrinsic fluorescence intensity with blue shift of maximum fluorescence peak. But ultrasound had no effect on its primary structure. Moreover, the functions of scallop mantle protein were regulated by modifying its structures by ultrasound. Specifically, the protein had the highest performance in foaming property and in-vitro digestibility under ultrasonic power of 100 W, oil binding capacity under 100 W, water binding capacity under 300 W, solubility and emulsification capacity under 400 W, and emulsion stability under 600 W. These results prove ultrasonic treatment has the potential to effectively improve functional properties and quality of scallop mantle protein, benefiting in comprehensive utilization of scallop mantles.  相似文献   

15.
A highly hygienic walnut emulsion beverage was prepared by using a slit dual-frequency emulsification technique. The optimal ultrasonic parameters were studied as a model system: the ultrasonic time of 50 min, the ultrasonic power density of 260 W/L, and a dual-frequency ultrasonic combination of 28/68 kHz. Walnut emulsion with an average mean volume diameter of 2.05 µm, a Zeta potential absolute value of 40 mV was obtained after ultrasonic treatment, and the emulsion stability could be maintained for more than 14 days without phase separation. At the lowest ultrasonic energy input, the vibrating emulsion could promote droplet aggregation. However, excessive energy input could result in sample overtreatment and reduced emulsion activity. The laser scanning confocal microscope (LSCM) and transmission electron microscope (TEM) confirmed that walnut emulsion processed by slit dual-frequency ultrasonic had pretty high stability. Therefore, the slit dual-frequency ultrasonic emulsification technique was found to be well suited for the preparation of complex and fine oil-in-water food emulsions.  相似文献   

16.
Lotus seed starch nanoparticles were prepared by ultrasonic (ultrasonic power: 200 W, 600 W, 1000 W; time: 5 min, 15 min, 25 min; liquid ratio (starch: buffer solution): 1%, 3%, 5%) assisted enzymatic hydrolysis (LS-SNPs represent lotus seed starch nanoparticles prepared by enzymatic hydrolysis and U-LS-SNPs represent lotus seed starch nanoparticles prepared by high pressure homogenization-assisted enzymatic hydrolysis). The structure and physicochemical properties of U-LS-SNPs were studied by laser particle size analysis, scanning electron microscope, X-ray diffraction, Raman spectroscopy, nuclear magnetic resonance and gel permeation chromatography system. The results of scanning electron microscopy showed that the surface of U-LS-SNPs was cracked and uneven after ultrasonic-assisted enzymolysis, and there was no significant difference from LS-SNPs. The results of particle size analysis and gel permeation chromatography showed that the particle size of U-LS-SNPs (except 5% treatment group) was smaller than that of LS-SNPs. With the increase of ultrasonic power and time, the weight average molecular gradually decreased. The results of X-ray diffraction and Raman spectroscopy showed that ultrasonic waves first acted on the amorphous region of starch granules. With the increase of ultrasonic power and time, the relative crystallinity of U-LS-SNPs increased first and then decreased. The group (600 W, 15 min, 3%) had the highest relative crystallinity. The results of nuclear magnetic resonance studies showed that the hydrogen bond and double helix structure of starch were destroyed by ultrasound, and the double helix structure strength of U-LS-SNPs was weakened compared with LS-SNPs. In summary, U-LS-SNPs with the small-sized and the highest crystallinity can be prepared under the conditions of ultrasonic power of 600 W, time of 15 min and material-liquid ratio of 3%.  相似文献   

17.
The ultrasonic formation of stable emulsions of a bioactive material, black seed oil, in skim milk was investigated. The incorporation of 7% of black seed oil in pasteurised homogenized skim milk (PHSM) using 20 kHz high intensity ultrasound was successfully achieved. The effect of sonication time and acoustic power on the emulsion stability was studied. A minimum process time of 8 min at an applied acoustic power of 100 W was sufficient to produce emulsion droplets stable for at least 8 days upon storage at 4 ± 2 °C, which was confirmed through creaming stability, particle size, rheology and color analysis. Partially denatured whey proteins may provide stability to the emulsion droplets and in addition to the cavitation effects of ultrasound are responsible for the production of smaller sized emulsion droplets.  相似文献   

18.
The combination of protein and flavonoids can ameliorate the problems of poor solubility and stability of flavonoids in utilization. In this study, soybean protein isolate pretreated by ultrasonication was selected as the embedding wall material, which was combined with luteolin to form a soybean protein isolate-luteolin nanodelivery system. The complexation effect and structural changes of soybean protein isolate (SPI) and ultrasonic pretreatment (100 W, 200 W, 300 W, 400 W and 500 W) of soybean protein isolate with luteolin (LUT) were compared, as well as the changes in digestion characteristics and antioxidant activity in vitro. The results showed that proper ultrasonic pretreatment increased the encapsulation efficacy, loading amount and solubility to 89.72%, 2.51 μg/mg and 90.56%. Appropriate ultrasonic pretreatment could make the particle size and the absolute value of ζ-potential of SPI-LUT nanodelivery system decrease and increase respectively. The FTIR and fluorescence results show that appropriate ultrasonic pretreatment could reduce α-helix, β-sheet and random coil, increase β-turn, and enhance fluorescence quenching. The thermodynamic evaluation results indicate that the ΔG < 0, ΔH > 0 and ΔS > 0, so the interaction of LUT with the protein was spontaneous and mostly governed by hydrophobic interactions. The XRD results show that the LUT was amorphous and completely wrapped by SPI. The DSC results showed that ultrasonic pretreatment could improve the thermal stability of SPI-LUT nanodelivery system to 112.66 ± 1.69 °C. Digestion and antioxidant analysis showed that appropriate ultrasonic pretreatment increased the LUT release rate and DPPH clearance rate of SPI-LUT nanodelivery system to 89.40 % and 55.63 % respectively. This study is a preliminary source for the construction of an SPI nanodelivery system with ultrasound pretreatment and the deep processing and utilization of fat-soluble active substances.  相似文献   

19.
Ultrasound technology was used to treat rice bran protein (RBP), and the structural and functional properties of ultrasonically treated RBP (URBP) and its chlorogenic acid (CA) complex were studied. When ultrasonic power of 200 W was applied for 10 min, the maximum emission peak λmax of the URBP-CA complex in the fluorescence spectrum was red-shifted by 3.6 nm compared to that of the untreated complex. The atomic force microscope (AFM) analysis indicated that the surface roughness of the complex was minimized (3.89 nm) at the ultrasonic power of 200 W and treatment time of 10 min. Under these conditions, the surface hydrophobicity (H0) was 1730, the contents of the α-helix and β-sheet in the complex were 2.97% and 6.17% lower than those in the untreated sample, respectively, the particle size decreased from 106 nm to 18.2 nm, and the absolute value of the zeta-potential increased by 11.0 mV. Therefore, ultrasonic treatment and the addition of CA changed the structural and functional properties of RBP. Moreover, when ultrasonic power of 200 W was applied for 10 min, the solubility, emulsifying activity index (EAI), and emulsion stability index (ESI) were 68%, 126 m2/g, and 37 min, respectively.  相似文献   

20.
Oxidative attack leads to the oxidative aggregation and structural and functional feature weakening of soybean protein. We aimed to investigate the impact of ultrasonic treatment (UT) with different intensities on the structure, emulsifying features and interfacial features of oxidized soybean protein aggregates (OSPI). The results showed that oxidative treatment could disrupt the native soy protein (SPI) structure by promoting the formation of oxidized aggregates with β1-sheet structures through hydrophobic interactions. These changes led to a decrease in the solubility, emulsification ability and interfacial activity of soybean protein. After low-power ultrasound (100 W, 200 W) treatment, the relative contents of β1-sheets, β2-sheets, random coils, and disulfide bonds of the OSPI increased while the surface hydrophobicity, absolute ζ-potential value and free sulfhydryl content decreased. Moreover, protein aggregates with larger particle sizes and poor solubility were formed. The emulsions prepared using the OSPI showed bridging flocculation and decreased protein adsorption and interfacial tension. After applying medium-power ultrasound (300 W, 400 W, and 500 W) treatments, the OSPI solubility increased and particle size decreased. The α-helix and β-turn contents, surface hydrophobicity and absolute ζ-potential value increased, the structure unfolded, and the disulfide bond content decreased. These changes improved the emulsification activity and emulsion state of the OSPI and increased the protein adsorption capacity and interfacial tension of the emulsion. However, after a high-power ultrasound (600 W) treatment, the OSPI showed a tendency to reaggregate, which had a certain negative effect on the emulsification activity and interfacial activity. The results showed that UT at an appropriate power could depolymerize OSPI and improve the emulsification and interfacial activity of soybean protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号