首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zero-one knapsack problem is a linear zero-one programming problem with a single inequality constraint. This problem has been extensively studied and many applications and efficient algorithms have been published. In this paper we consider a similar problem, one with an equality instead of the inequality constraint. By replacing the equality by two inequalities one of which is placed in the economic function, a Lagrangean relaxation of the problem is obtained. The relation between the relaxed problem and the original problem is examined and it is shown how the optimal value of the relaxed problem varies with increasing values of the Lagrangean multiplier. Using these results an algorithm for solving the problem is proposed.The paper concludes with a discussion of computational experience.  相似文献   

2.
In the paper, we first deduce an optimization problem from an inverse problem for a general operator equation and prove that the optimization problem possesses a unique, stable solution that converges to the solution of the original inverse problem, if it exists, as a regularization factor goes to zero. Secondly, we apply the above results to an inverse problem determining the spatially varying coefficients of a second order hyperbolic equation and obtain a necessary condition, which can be used to get an approximate solution to the inverse problem.  相似文献   

3.
We investigate the complexity of finding solutions to infinite recursive constraint satisfaction problems. We show that, in general, the problem of finding a solution to an infinite recursive constraint satisfaction problem is equivalent to the problem of finding an infinite path through a recursive tree. We also identify natural classes of infinite recursive constraint satisfaction problems where the problem of finding a solution to the infinite recursive constraint satisfaction problem is equivalent to the problem of finding an infinite path through finitely branching recursive trees or recursive binary trees. There are a large number of results in the literature on the complexity of the problem of finding an infinite path through a recursive tree. Our main result allows us to automatically transfer such results to give equivalent results about the complexity of the problem of finding a solution to a recursive constraint satisfaction problem.  相似文献   

4.
In this paper, an inverse boundary value problem for a two-dimensional hyperbolic equation with overdetermination conditions is studied. To investigate the solvability of the original problem, we first consider an auxiliary inverse boundary value problem and prove its equivalence to the original problem in a certain sense. We then use the Fourier method to reduce such an equivalent problem to a system of integral equations. Furthermore, we prove the existence and uniqueness theorem for the auxiliary problem by the contraction mappings principle. Based on the equivalency of these problems, the existence and uniqueness theorem for the classical solution of the original inverse problem is proved. Some discussions on the numerical solutions for this inverse problem are presented including some numerical examples.  相似文献   

5.
《Optimization》2012,61(5):1107-1129
We examine a multidimensional optimization problem in the tropical mathematics setting. The problem involves the minimization of a non-linear function defined on a finite-dimensional semimodule over an idempotent semifield subject to linear inequality constraints. We start with an overview of known tropical optimization problems with linear and non-linear objective functions. A short introduction to tropical algebra is provided to offer a formal framework for solving the problem under study. As a preliminary result, a solution to a linear inequality with an arbitrary matrix is presented. We describe an example optimization problem drawn from project scheduling and then offer a general representation of the problem. To solve the problem, we introduce an additional variable and reduce the problem to the solving of a linear inequality, in which the variable plays the role of a parameter. A necessary and sufficient condition for the inequality to hold is used to evaluate the parameter, whereas the solution to the inequality is considered a solution to the problem. Based on this approach, a complete direct solution in a compact vector form is derived for the optimization problem under fairly general conditions. Numerical and graphical examples for two-dimensional problems are given to illustrate the obtained results.  相似文献   

6.
This paper studies an inventory routing problem (IRP) with split delivery and vehicle fleet size constraint. Due to the complexity of the IRP, it is very difficult to develop an exact algorithm that can solve large scale problems in a reasonable computation time. As an alternative, an approximate approach that can quickly and near-optimally solve the problem is developed based on an approximate model of the problem and Lagrangian relaxation. In the approach, the model is solved by using a Lagrangian relaxation method in which the relaxed problem is decomposed into an inventory problem and a routing problem that are solved by a linear programming algorithm and a minimum cost flow algorithm, respectively, and the dual problem is solved by using the surrogate subgradient method. The solution of the model obtained by the Lagrangian relaxation method is used to construct a near-optimal solution of the IRP by solving a series of assignment problems. Numerical experiments show that the proposed hybrid approach can find a high quality near-optimal solution for the IRP with up to 200 customers in a reasonable computation time.  相似文献   

7.
The concept of filtered counting process is used to model several stochastic problems in manufacturing systems. Through a judicious selection of an appropriate response function, several system characteristics are evaluated under distribution-free condition. Applications include a machine shop problem, a machine sequencing problem, a flexible manufacturing problem, a job sequencing problem, a maintenance problem and an inventory problem. The methodology provides a unique, original and simple way to solve a large array of problems  相似文献   

8.
A heuristic optimization methodology, Dynamic Contraction (DC), is introduced as an approach for solving a wide variety of hard combinatorial problems. Contraction is an operation that maps an instance of a problem to a smaller instance of the same problem. DC is an iterative improvement strategy that relies on contraction as a mechanism for escaping local minima. As a byproduct of contraction, efficiency is improved due to a reduction of problem size. Effectiveness of DC is shown through simple applications to two classical combinatorial problems: The graph bisection problem and the traveling salesman problem.  相似文献   

9.
In this paper, we study the problem of synchronized scheduling of assembly and air transportation to achieve accurate delivery with minimized cost in consumer electronics supply chain. This problem was motivated by a major PC manufacturer in consumer electronics industry. The overall problem is decomposed into two sub-problems, which consist of an air transportation allocation problem and an assembly scheduling problem. The air transportation allocation problem is formulated as an integer linear programming problem with the objective of minimizing transportation cost and delivery earliness tardiness penalties. The assembly scheduling problem seeks to determine a schedule ensuring that the orders are completed on time and catch the flights such that the waiting penalties between assembly and transportation is minimized. The problem is formulated as a parallel machine scheduling problem with earliness penalties. The computational complexities of the two sub-problems are investigated. The air transportation allocation problem with split delivery is shown to be solvable. The parallel machine assembly scheduling problem is shown to be NP-complete. Simulated annealing based heuristic algorithms are presented to solve the parallel machine problem.  相似文献   

10.
This paper considers a stochastic version of the linear continuous type knapsack problem in which the cost coefficients are random variables. The problem is to find an optimal solution and an optimal probability level of the chance constraint. This problem P0 is first transformed into a deterministic equivalent problem P. Then a subproblem with a positive parameter is introduced and a close relation between P and its subproblem is shown. Further, an auxiliary problem of the subproblem is introduced and a direct relation between P and the auxiliary problem is derived through a relation connecting the subproblem and its auxiliary problem. Fully utilizing these relations, an efficient algorithm is proposed that finds an optimal solution of P in at most O(n4) computational time where n is the number of decision variables. Finally, further research problems are discussed.  相似文献   

11.
A penalty function method for solving inverse optimal value problem   总被引:2,自引:0,他引:2  
In order to consider the inverse optimal value problem under more general conditions, we transform the inverse optimal value problem into a corresponding nonlinear bilevel programming problem equivalently. Using the Kuhn–Tucker optimality condition of the lower level problem, we transform the nonlinear bilevel programming into a normal nonlinear programming. The complementary and slackness condition of the lower level problem is appended to the upper level objective with a penalty. Then we give via an exact penalty method an existence theorem of solutions and propose an algorithm for the inverse optimal value problem, also analysis the convergence of the proposed algorithm. The numerical result shows that the algorithm can solve a wider class of inverse optimal value problem.  相似文献   

12.
We consider a multicriteria equilibrium programming problem including, as special cases, the mathematical programming problem, the problem of finding a saddle point, the multicriteria problem of finding a Pareto point, the minimization problem with an equilibrium choice of an admissible set, etc. We suggest a continuous version of the extragradient method with prediction and analyze its convergence.  相似文献   

13.
A shape optimization problem concerned with thermal deformation of elastic bodies is considered. In this article, measure theory approach in function space is derived, resulting in an effective algorithm for the discretized optimization problem. First the problem is expressed as an optimal control problem governed by variational forms on a fixed domain. Then by using an embedding method, the class of admissible shapes is replaced by a class of positive Borel measures. The optimization problem in measure space is then approximated by a linear programming problem. The optimal measure representing optimal shape is approximated by the solution of this finite-dimensional linear programming problem. Numerical examples are also given.  相似文献   

14.
In this paper, the optimal control problem is governed by weak coupled parabolic PDEs and involves pointwise state and control constraints. We use measure theory method for solving this problem. In order to use the weak solution of problem, first problem has been transformed into measure form. This problem is reduced to a linear programming problem. Then we obtain an optimal measure which is approximated by a finite combination of atomic measures. We find piecewise-constant optimal control functions which are an approximate control for the original optimal control problem.  相似文献   

15.
基于模糊收益率的组合投资模型   总被引:3,自引:0,他引:3  
本文考虑了收益率为模糊数的投资组合选择问题,利用模型约束简化方差约束,建立了投资组合选择的模糊线性规划模型,然后引进模糊期望把模糊线性规划问题化为普通参数线性规划问题,最后给出了一个数值算例.  相似文献   

16.
This article presents an algorithm for globally solving a sum of ratios fractional programming problem. To solve this problem, the algorithm globally solves an equivalent concave minimization problem via a branch-and-bound search. The main work of the algorithm involves solving a sequence of convex programming problems that differ only in their objective function coefficients. Therefore, to solve efficiently these convex programming problems, an optimal solution to one problem can potentially be used to good advantage as a starting solution to the next problem.  相似文献   

17.
This paper studies an arc routing problem with capacity constraints and time-dependent service costs. This problem is motivated by winter gritting applications where the “timing” of each intervention is crucial. The exact problem-solving approach reported here first transforms the arc routing problem into an equivalent node routing problem. Then, a column generation scheme is used to solve the latter. The master problem is a classical set covering problem, while the subproblems are time-dependent shortest path problems with resource constraints. These subproblems are solved using an extension of a previously developed algorithm. Computational results are reported on problems derived from a set of classical instances of the vehicle routing problem with time windows.  相似文献   

18.
In this paper, we establish the existence of the optimal control for an optimal control problem where the state of the system is defined by a variational inequality problem with monotone type mappings. Moreover, as an application, we get several existence results of an optimal control for the optimal control problem where the system is defined by a quasilinear elliptic variational inequality problem with an obstacle.  相似文献   

19.
In this paper, we consider an optimization problem which aims to minimize a convex function over the weakly efficient set of a multiobjective programming problem. From a computational viewpoint, we may compromise our aim by getting an approximate solution of such a problem. To find an approximate solution, we propose an inner approximation method for such a problem. Furthermore, in order to enhance the efficiency of the solution method, we propose an inner approximation algorithm incorporating a branch and bound procedure.  相似文献   

20.
We consider a frictionless contact problem with unilateral constraints for a 2D bar. We describe the problem, then we derive its weak formulation, which is in the form of an elliptic variational inequality of the first kind. Next, we establish the existence of a unique weak solution to the problem and prove its continuous dependence with respect to the applied tractions and constraints. We proceed with the study of an associated control problem for which we prove the existence of an optimal pair. Finally, we consider a perturbed optimal control problem for which we prove a convergence result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号