首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The dependence of the DC conductivity of diluted colloidal suspensions on the size, zeta potential, and state of motion of the dispersed particles is analyzed both theoretically and numerically. It is shown that the simple formula that represents the conductivity as a sum of products: charge times mobility, taken over all the carriers present in the suspension, is only valid for exceedingly low values of the product kappaa. In contrast, the formulation based on the value of the dipolar coefficient of the suspended particles seems to be valid for all the range of particle sizes. This assertion is only true if the dipolar coefficient is calculated taking into account the electrophoretic motion of the particles. For very low values of the product kappaa, the dipolar coefficient of particles free to move can be several orders of magnitude larger than that of immobile particles.  相似文献   

2.
An analysis of the dielectrophoretic crossover frequency as a function of medium conductivity has been made for submicron spheres with different surface functionalities. It is shown that the AC electrokinetic behavior of the particles can be explained by modeling the surface conductivity of the particle as the sum of two surface conductance components: one due to charge motion behind the slip plane (the Stern layer) and the other due to charge motion in front of the slip plane.  相似文献   

3.
Nanometric silver dispersed water based nanofluids have been prepared by a single-step chemical process. The crystallite/particle size, morphology and purity of nanoparticles were characterized using standard microscopic, diffraction and spectroscopic techniques. The thermal conductivity enhancement (with respect to the base fluid) has been determined as a function of concentration and size of silver particles using transient hot-wire technique. The accurate fitting of the experimental data of thermal conductivity enhancement with a theoretical model developed by Patel et al. predicts that high specific surface area of the particles, layering at the liquid-solid interface and Brownian motion may be responsible for enhancement.  相似文献   

4.
At relatively high temperatures and low frequencies the electrical properties of many polymers are dominated by ionic conductivity. In cases where the glass transition is obscured by conductivity, it can be revealed by treating the data in terms of the electric modulus. The magnitude of the activation energy for conductivity (24–67 kcal/mol) for Nylons 6, 66, and 6I, polybutylene terephthalate, and polycarbonate indicates that the transport of charged particles requires the motion of polymer segments.  相似文献   

5.
Coatings containing Fe-Si or Si particles were electrodeposited on 3.0%(mass fraction) Si steel sheets. The surface morphology, the cross-section and the silicon content of coating have been investigated, respectively. It was found that the number of particles on the coating surface and cross-section significantly decreased with increasing silicon content in the applied particles, leading to a decrease of the silicon content of coatings. About 10.2% silicon content of coatings deposited with Fe-30%Si particles can be obtained, whereas that for Si particles was only 2.9% at a particle concentration of 100 g/L and current density of 2 A/dm2. This is mainly attributed to the conductivity of applied particles. High conductivity can promote the co-deposition of the particles. With increasing silicon content in the particles, their conductivity decreased sharply, resulting in the decrease of silicon content of coatings. Present work may initiate a new method to modify the particle content of the composite coatings via changing the conductivity of the particles during the composite electrodeposition. In this paper, a possible mechanism was proposed to explain the phenomena.  相似文献   

6.
Inclusion of conductive particles is a convenient way for the enhancement of electrical and thermal conductivities of polymers. However, improvement of the mechanical properties of such composites has remained a challenge. In this work, maleated polyethylene is proposed as a novel matrix for the production of conductive metal–thermoplastic composites with enhanced mechanical properties. The effects of two conductive particles (iron and aluminum) on the morphological, mechanical, electrical, and thermal properties of maleated polyethylene were investigated. Morphological observations revealed that the matrix had excellent adhesion with both metal particles. Increase in particle concentration was shown to improve the tensile strength and modulus of the matrix significantly with iron being slightly more effective. Through‐plane electrical conductivity of maleated polyethylene was also substantially improved after adding iron particles, while percolation was observed at particle contents of around 20–30% vol. In the case of aluminum, no percolation was observed for particle contents of up to 50% vol., which was linked to the orientation of the particles in the in‐plane direction due to the squeezing flow. Inclusion of particles led to substantial increase (over 700%) in the thermal conductivities of both composites. The addition of high concentrations of metal particles to matrix led to the creation of two groups of materials: (i) composites with high electrical and thermal conductivities and (ii) composites with low electrical and high thermal conductivities. Such characteristics of the composites are expected to provide a unique opportunity for applications where a thermally conductive/electrically insulating material is desired. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Light‐driven micropumps, which are based on electro‐osmosis with the electric field generated by photocatalytic reactions, are among most attractive research topics in chemical micromotors. Until now, research in this field has mainly been focused on the directional motion or collective behavior of microparticles, which lack practical applications. In this study, we have developed a photowelding strategy for repeated photoinduced conductivity recovery of cracked flexible circuits. We immersed the circuit in a suspension of conductive healing particles and applied photoillumination to the crack; photocatalysis of a predeposited pentacene (PEN) layer triggered electro‐osmotic effects to gather conductive particles at the crack, thus leading to conductivity recovery of the circuit. This photowelding strategy is a novel application of light‐driven micropumps and photocatalysis for conductivity restoration.  相似文献   

8.
In this paper the electrophoretic mobility and the electrical conductivity of concentrated suspensions of spherical colloidal particles have been numerically studied under arbitrary conditions including zeta potential, particle volume fraction, double-layer thickness (overlapping of double layers is allowed), surface conductance by a dynamic Stern layer model (DSL), and ionic properties of the solution. We present an extensive set of numerical data of both the electrophoretic mobility and the electrical conductivity versus zeta potential and particle volume fraction, for different electrolyte concentrations. The treatment is based on the use of a cell model to account for hydrodynamic and electrical interactions between particles. Other theoretical approaches have also been considered for comparison. Furthermore, the study includes the possibility of adsorption and lateral motion of ions in the inner region of the double layers (DSL model), according to the theory developed by C. S. Mangelsdorf and L. R. White (J. Chem. Soc. Faraday Trans.86, 2859 (1990)). The results show that the correct limiting cases of low zeta potentials and thin double layers for dilute suspensions are fulfilled by our conductivity formula. Moreover, the presence of a DSL causes very important changes, even dramatic, on the values of both the electrophoretic mobility and the electrical conductivity for a great range of volume fractions and zeta potentials, specially when double layers of adjacent cells overlap, in comparison with the standard case (no Stern layer present). It can be concluded that in general the presence of a dynamic Stern layer causes the electrophoretic mobility to decrease and the electrical conductivity to increase in comparison with the standard case for every volume fraction, zeta potential, and double-layer thickness.  相似文献   

9.
This work describes the effect of solids load and ionic strength on the electrical conductivity (K(S)) of concentrated aqueous suspensions of commercial alpha-alumina (1-35 vol% solids). The results obtained show that the dependency of the electrical conductivity of the suspending liquid (K(L)) on the volume fraction of solids is well described by Maxwell's model. The change in the conductivity of the suspensions relative to that of the suspending liquid (K(S)/K(L)) was found to be inversely proportional to the solids content, as predicted by Maxwell's model. The relative conductivity rate, DeltaK, could be interpreted in terms of the DLVO theory and the particles double layer parameter, kappaa, and used as a stability criterion. As kappaa changes, in response to the changes in ionic strength, so does the conducting to insulating character of the particles and, as such, their contribution to the overall suspension conductivity (expressed by DeltaK). When the particles become insulating, the suspension conductivity decreases when the solids load increases. The turning point in this particle behaviour corresponds to a critical concentration of ions in the solution that destabilises the suspension and is associated with the critical coagulation concentration (ccc). It is the electrical double layer that ultimately determines the conducting or insulating character of the particles, and that character can be made to change, as required for suspension stability, and accessed by the relative conductivity rate.  相似文献   

10.
A combination of small‐angle neutron scattering (SANS), conductivity, and surface tension measurements is used to show that the primary droplets in miniemulsion polymerization have the same size and the same size distribution as the final particles. It is also shown that hexadecane employed as a cosurfactant is homogeneously dispersed in the droplets and does not possess any interface activity. The presented data support that a 1 : 1 copy from monomer droplets to polymer particles is achieved.  相似文献   

11.
Three Cobalt(III) phthalocyanine (Phthalcon) powders with different particle sizes and chemical compositions, but almost equal XRD spectra and powder conductivity were synthesized and used as conductive fillers in crosslinked epoxy matrices. Two of these Phthalcons are new compounds. The relation between the conductivity of the composites and the type and amount of filler used was determined. The influence of particle size and chemical composition on this relation appeared to be minimal. These composites had a percolation threshold of 0.9 vol % and a maximum volume conductivity of 10?7 S/cm. Detailed analysis showed that the particle networks have very similar fractal structures and that they are likely to be formed by diffusion limited cluster‐cluster aggregation during processing. Evidence is presented that these particle networks are formed at an early stage of crosslinking and that the charge transfer between particles in the networks is neither limited by the Phthalcon particle size, nor by the presence of polymer matrix between the particles. The maximum volume conductivity of these composites is likely to be limited by the amount of filler used, the crystal structure defects on the particle surface, and the fractality and the imperfection of the particle networks. The impact of these findings on the conductivity of other polymer nanocomposites is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1079–1093, 2008  相似文献   

12.
The polarizability of polymer-coated colloidal particles, as measured via dielectric relaxation spectroscopy, reflects on the degree to which convection, diffusion, and electromigration deform the equilibrium double layer. With a polymer coating, convection and electro-osmosis are resisted by hydrodynamic drag on the polymer segments. The electro-osmotic flow near the underlying bare surface is therefore diminished. Characteristics of the particles and the adsorbed polymer can, in principle, be inferred by measuring the frequency-dependent polarizability. In this work, "exact" numerical solutions of the electrokinetic equations are used to examine how adsorbed polymer changes the particle polarizability and, hence, the conductivity and dielectric constant increments of dilute suspensions. For neutral polymer coatings, the conductivity and dielectric constant increments are found to be very similar to those of the underlying bare particles, so the response depends mostly on the underlying bare particles. These observations suggest that dielectric spectroscopy is best used to determine the underlying surface charge, with characteristics of the coating inferred from the electrophoretic or dynamic mobility, together with the hydrodynamic radius obtained from sedimentation or dynamic light scattering. Addressed briefly are the effects of added counterions and nonspecific adsorption. The electrokinetic model explored in this work can be used to guide experiments (frequency and ionic strength, for example) to either minimize or maximize the sensitivity of the complex conductivity to the coating thickness or permeability.  相似文献   

13.
This work is focused on experimental determination of density, viscosity and thermal conductivity as a function of temperature and composition for fatty acid methyl esters (FAME) from soybean, castor and Jatropha curcas oils. Results show that an increase in temperature, over the range of (273 to 363) K, resulted in a decrease of all properties studied. FAME from soybean and J. curcas oils presented similar rheological behaviour, while FAME from castor oil presented higher values for density and viscosity. Density, dynamic viscosity and thermal conductivity data for all systems obtained here were correlated using empirical equations with good agreement between experimental and calculated values. Experimental data presented here may be useful as a database for specification purposes and equipment design and plant operation in the biodiesel industry.  相似文献   

14.
Direct electron beam writing in nanoparticle films is employed to create nanoscale wires between prepatterned gold electrodes on SiO(2)/Si wafers. Characterization of these nanowires using AFM, SEM, and EDX reveals a core/sheath morphology, where a gold-rich core is surrounded by a sheath which is mainly of carbon. Z-contrast STEM images indicate that the central core consists of a distribution of metal cores in a carbon network. The results suggest that the nanoparticle network is created through cross-linking of the ligands of adjacent particles. The high resistivities obtained in conductivity measurements are consistent with this picture. The work illustrates the ability to generate patterned nanoparticle arrays which can be addressed electrically.  相似文献   

15.
A general expression for the electrical conductivity of a concentrated suspension of spherical colloidal particles is obtained for the case where the particle zeta potential is low and the overlapping of the electrical double layers of adjacent particles is negligible by using Kuwabara's cell model. It is shown how the conductivity of a concentrated suspension depends on the particle volume fraction, the zeta potential zeta, and the reduced particle radius kappaa (kappa = Debye-Hückel parameter and a = particle radius). It is also found that the obtained conductivity formula tends to Maxwell's formula for two different extreme cases: (i) when the particles are uncharged (zeta = 0) and (ii) when the electrical double layers around the particles are infinitesimally thin (kappaa --> infinity). That is, in the latter limiting case (kappaa --> infinity), the conductivity becomes independent of the zeta potential, just as in the case of dilute suspensions. Copyright 1999 Academic Press.  相似文献   

16.
In this work a novel semianalytical procedure to calculate the exact scattering behavior of complex particles made of intersecting spheres in the Rayleigh-Gans approximation is presented. Pickering emulsions, Janus particles, and lock and key particle colloids are particular cases of particles built from intersecting spheres. The proposed methodology is based on the decomposition of the complex particle as a sum of simpler components whose scattering properties can be evaluated using a simple integral. The procedure is developed for any number of spheres that intersect in pairs but it can be directly extended to intersections that involve more than two spheres at the same time. Some examples are presented to illustrate the application of the model to: (i) the study of the sensitivity of scattering spectra to detect complex particles from approximated model particles; (ii) the detection of different degrees of penetration of one particle into the other; (iii) the identification of the location of the cavity in particles that intersect with a spherical surface of contact; and (iv) the follow up of the evolution of a complex particle from a mix of its components.  相似文献   

17.
Dielectrophoresis of nanoparticles   总被引:2,自引:0,他引:2  
Kadaksham AT  Singh P  Aubry N 《Electrophoresis》2004,25(21-22):3625-3632
A numerical scheme based on the distributed Lagrange multiplier method (DLM) is used to study the motion of nano-sized particles of dielectric suspensions subjected to uniform and nonuniform electric fields. Particles are subjected to both electrostatic and hydrodynamic forces, as well as Brownian motion. The results of the simulations presented in this paper show that uniform electric fields the evolution of the particle structures depends on the ratio of electrostatic particle-particle interactions and Brownian forces. When this ratio is of the order of 100 or greater, particles form stable chains and columns, whereas when it is of the order of 10 or smaller the particle distribution is random. For the nonuniform electric field cases considered in this paper, the relative magnitude of Brownian forces is in the range such that it does not influence the eventual collection of particles by dielectrophoresis and the particular locations where the particles are collected. However, Brownian motion is observed to influence the transient particle trajectories. The deviation of the particle trajectories compared to those determined by the electrostatic and hydrodynamic forces alone is characterized by the ratio of Brownian and dielectrophoretic forces.  相似文献   

18.
The microscopic details of local particle dynamics is studied in a glass-forming one component supercooled liquid modeled by a Dzugutov potential developed for simple metallic glass formers. Our main goal is to investigate particle motion in the supercooled liquid state, and to ascertain the extent to which this motion is cooperative and occurring in quasi-one-dimesional, string-like paths. To this end we investigate in detail the mechanism by which particles move along these paths. In particular, we show that the degree of coherence--that is, simultaneous motion by consecutive particles along a string--depends on the length of the string. For short strings, the motion is highly coherent. For longer strings, the motion is highly coherent only within shorter segments of the string, which we call "microstrings." Very large strings may contain several microstrings within which particles move simultaneously, but individual microstrings within a given string are temporally uncorrelated with each other. We discuss possible underlying mechanism for this complex dynamical behavior, and examine our results in the context of recent work by Garrahan and Chandler [Phys. Rev. Lett. 89, 035704 (2002)] in which dynamic facilitation plays a central role in the glass transition.  相似文献   

19.
A lab-on-a-chip device is described for continuous sorting of fluorescent polystyrene microparticles utilizing direct current insulating dielectrophoresis (DC-iDEP) at lower voltages than previously reported. Particles were sorted by combining electrokinetics and dielectrophoresis in a 250 μm wide PDMS microchannel containing a rectangular insulating obstacle and four outlet channels. The DC-iDEP particle flow behaviors were investigated with 3.18, 6.20 and 10 μm fluorescent polystyrene particles which experience negative DEP forces depending on particle size, DC electric field magnitude and medium conductivity. Due to negative DEP effects, particles are deflected into different outlet streams as they pass the region of high electric field density around the obstacle. Particles suspended in dextrose added phosphate buffer saline (PBS) at conductivities ranging from 0.50 to 8.50 mS/cm at pH 7.0 were compared at 6.85 and 17.1 V/cm. Simulations of electrokinetic and dielectrophoretic forces were conducted with COMSOL Multiphysics® to predict particle pathlines. Experimental and simulation results show the effect of medium and voltage operating conditions on particle sorting. Further, smaller particles experience smaller iDEP forces and are more susceptible to competing nonlinear electrostatic effects, whereas larger particles experience greater iDEP forces and prefer channels 1 and 2. This work demonstrates that 6.20 and 10 μm particles can be independently sorted into specific outlet streams by tuning medium conductivity even at low operating voltages. This work is an essential step forward in employing DC-iDEP for multiparticle sorting in a continuous flow, multiple outlet lab-on-a-chip device.  相似文献   

20.
The aim of this work is to study the effect of non-ionic short chain liquid polymer on the conductivity of PVA-LiClO4 membrane. Polyethylene glycol p-tert-octylphenyl ether (Triton X-100) is used as an additive with different concentrations in PVA-LiClO4 matrix. The conductivity of additive incorporated polymer electrolyte increases to two orders of magnitude than the pristine polymer electrolyte. The maximum conductivity is measured to be 1.92 mS/cm at ambient temperature. The conductivity enhancement is correlated with the availability of free ions as well as segmental motion of polymer chain with the aid of FTIR and Dielectric relaxation tools. DC polarization and cyclic voltammetry techniques are also carried out to check the suitability of prepared polymer electrolytes as electrolyte material for batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号