首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of hydroxo acetate complexes of iron (III) ion has been studied at 25 degrees C in 3 M (Na)ClO4 ionic medium by measuring with a glass electrode the hydrogen ion concentration in Fe(ClO4)3-HClO4-NaAc mixtures (Ac = acetate ion). The acetate/metal ratio ranged from 0 to 6, the metal concentration varied from 0.005 to 0.06 M, whereas [H+] was stepwise decreased from 0.1 M to initial precipitation of hydroxo-acetates. This occurred, depending on the acetate/metal ratio, in the -log[H+] range 1.85-2.7. The potentiometric data are consistent with the presence of Fe3(OH)3Ac3(3+), Fe2(OH)2(4+), Fe3(OH)4(5+), Fe3(OH)5(4+) and, as minor species, of Fe3(OH)2Ac6+, FeAc2+, FeAc2+, FeOH2+ and Fe(OH)2+. Previously published EMF measurements with redox and glass half-cells were recalculated to refine the stability constants of FeAc2+, FeAc2+ and Fe3(OH)2Ac6+. Formation constants *beta pqr for pFe(3+)+(q-r)H2O + rHAc reversible Fep(OH)(q-r)(Ac)r3p-q + qH+ (in parenthesis the infinite dilution value): log*beta 111 = -1.85 +/- 0.02 (-0.67 +/- 0.15), log*beta 122 = -3.43 +/- 0.02 (-1.45 +/- 0.15); log*beta 363 = -5.66 +/- 0.03 (-2.85 +/- 0.40), log*beta 386 = -8.016 +/- 0.006 (-4.06 +/- 0.15), log*beta 220 = -2.88 +/- 0.02 (-2.84 +/- 0.05), log*beta 340 = -6.14 +/- 0.18 (-6.9 +/- 0.4), log*beta 350 = -8.44 +/- 0.09 (-7.65 +/- 0.15).  相似文献   

2.
The ternary Fe (III)-OH(-)-SO4(2-) complexes have been investigated at 25 degrees C in 3 M NaClO4 by potentiometric titration with glass electrode. The metal and sulfate concentrations ranged from 2.5 x 10(-3) to 0.03 M and from 5.10(-3) to 0.060 M, respectively. [H+] was decreased from 0.05 M to incipient precipitation of basic sulfate which occured at log[H+] between -2.3 and -2.5 depending on the concentration of the metal. For the interpretation of the data stability constants of HSO4(-), of binary hydroxo complexes (FeOH2+, Fe(OH)2+, Fe2(OH)2(4+), Fe3(OH)4(5+), Fe3(OH)5(4+)) and of sulfate complexes (FeSO4+, FeHSO4(2+), Fe(SO4)2-) were assumed from independent sources. The data are consistent with the presence of FeOHSO4, log beta 1-11 = -0.49 +/- 0.03. Equilibrium constants are defined as beta pqr for pFe3+ +qH+ +rSO4(2-) [symbol: see text] FepHq(SO4)r3p+q-2r. No substantial better fit could be found by adding a second mixed complex. Only a slightly smaller agreement factor resulted introducing as minor ternary complex Fe3(OH)6(SO4)3(3-) with log beta 3-63 = -5.8 +/- 0.5. Its evidence, however, cannot be considered conclusive.  相似文献   

3.
The formation of ternary UO2(2+)-(OH-)-SO4(2-) complexes has been studied at 25 degrees C in 3 M NaClO4 ionic medium by measurements with a glass electrode. The solutions had uranium concentrations between 0.3 and 30 mM, sulfate between 20 and 200 mM, and 1.66 < or = [SO4(2-)]/[U(VI)] < or = 300. The hydrogen ion concentration ranged from 10(-3) M to incipient precipitation of basic sulfates. This occurred, depending on the metal concentration, at [H+] between 10(-4) and 10(-5.3) M. In the interpretation of the data the stabilities of binary complexes were assumed from independent sources. The data could be explained with the mixed complexes and equilibria (beta(pqr)(3sigma) refers to pUO2(2+) + qH2O + rSO4(2-) <==> (UO2)p(OH)q(SO4)r(2p-q-2r) + qH+): logbeta222 = -2.94 +/- 0.03, logbeta341 = -9.82 +/- 0.06, logbeta211 = -0.30 +/- 0.09, logbeta212 = 1.09 +/- 0.09, logbeta351 = -15.04 +/- 0.09 and logbeta462 = -14.40 +/- 0.06. The fit could be improved by including UO2OH+ with logbeta110 = -5.1 +/- 0.1. The identity of the minor species remains, however, an open question.  相似文献   

4.
The equilibria have been investigated at 25 degrees C in 3 M NaClO4 using potentiometry, glass and redox Fe3+/Fe2+ half-cells, and UV optical absorptiometry. The concentration of the reagents was chosen in the intervals: 10(-4) < or = [Fe(III)] < or = 5.10(-3) M, 0.01 < or = [SO4(2-)]tot < or = 0.65 M. The value of [H+] was kept at 0.1 M or more to reduce the hydrolysis of the Fe3+ ion to less than 1%. Auxiliary constants, corresponding to the formation of Fe(II)-sulfate complexes and to the association of H+ with SO4(2-) ions, were taken from previous determinations. The experimental data could be explained with the equilibria [formula: see text] Equilibrium constants at infinite dilution, log beta 101 degrees = 3.82 +/- 0.17, log beta 102 degrees = 5.75 +/- 0.17 and log beta 111 degrees = 3.68 +/- 0.35, have been evaluated by applying the specific interaction theory.  相似文献   

5.
Furia E  Porto R 《Annali di chimica》2004,94(11):795-804
The complexation equilibria of the hydrogen salicylate ion, HL(-), have been studied, at 25 degrees C, by potentiometric measurements with a glass electrode in 1 M NaClO4 for uranyl and Nd(III) ions and in 3 M NaClO4 for Pb(II) ion. The ligand concentration (CL) was varied between 10(-3) and 0.05 M. In the system with U(VI) the concentrations ranged between: 10(-3) < or = [U(VI)] < or = 0.01 M, 0.5 < or = CL /[U(VI)] < or = 10 and 10(-2) < or = [H+] < or = 10(-5) M; for neodymium system: 2 x 10(-3) < or = [Nd(III)] < or = 0.01, 1 < or = CL /[Nd(III)] < or = 10 and 10(-2) < or = [H+] < or = 10(-7) M; for lead system: 10(-3) < or = [Pb(II) < or = 3 x 10(-3), 1 < or = CL /Pb(II)] < or = 2 and 10(-5) < or = [H+] < or = 10(-7.3) M. The experimental data have been explained with the formation of UO2HL+, UO2L, UO2(OH)L(-), (UO2)2(OH)L2(-) UO2(HL)L(-), NdHL(2+), NdL(+), Nd(OH)L, PbHL(+), PbL and PbL2(2-). Equilibrium constants are given for the investigated ionic media and at infinite dilution.  相似文献   

6.
The complex formation equilibria between iron(II) and sulfate ions have been studied at 25 degrees C in 3 M NaClO4 ionic medium by measuring with a glass electrode the competition of Fe2+ and H+ ions for the sulfate ion. The concentrations of the metal and of the ligand were varied in the ranges 0.01 to 0.125 and 0.01 to 0.250 M, respectively. The analytical concentration of strong acid was chosen to be 0.01 or 0.03 M. The potentials of the glass electrode, corrected for the effect of replacement of medium ions with reagent species, have been interpreted with the equilibria [formula: see text] Stability constants valid in the infinite dilution reference state, logK zero = 1.98 +/- 0.16, log beta 1 zero = 2.1(5) +/- 0.2 and log beta 2 = 2.5 +/- 0.2, have been estimated by assuming the validity of the specific interaction theory.  相似文献   

7.
Reilly SD  Neu MP 《Inorganic chemistry》2006,45(4):1839-1846
A significant fraction of plutonium that is soluble in environmental waters and other aqueous solutions can be present as complexes of plutonyl, PuO2(2+). Few thermodynamic data are available for this ion, representing a problematic gap in plutonium chemistry and in the forecasting of radionuclide behavior under contamination and nuclear repository conditions. To address this need and more accurately determine the stoichiometry and stability of the basic hydrolytic products, we completed complimentary potentiometric and spectrophotometric studies of plutonium(VI) hydrolysis over the concentration range of 10(-2) to 10(-5) M Pu(VI). Dinuclear hydroxide species (PuO2)2(OH)2(2+) and (PuO2)2(OH)4(0)(aq) with hydrolysis constants log beta(2,2) = -7.79 +/- 0.20 and log beta(4,2) = -19.3 +/- 0.5 are indicated in all experiments of millimolar Pu(VI), 0.10 M NaNO3 solutions at 25 degrees C. At lower Pu(VI) concentrations, at and below 10(-4) M, the monomeric species PuO2OH+ and PuO2(OH)2(0)(aq) form with hydrolysis constants of log beta(1,1) = -5.76 +/- 0.07 and log beta(2,1) = -11.69 +/- 0.05, respectively. Distinct optical absorbance bands at 842 and 845 nm are reported for the mononuclear and dinuclear first hydrolysis species. Standard hydrolysis constants at zero ionic strength were calculated from the experimentally determined constants using the specific ion interaction theory. The Pu(VI) hydrolysis species and constants are compared with results from previous studies for plutonium and uranium. Major differences between uranyl and plutonyl hydrolysis are described.  相似文献   

8.
Arrhenius rate expressions were determined for beta-scission of phenoxyl radical from 1-phenyl-2-phenoxyethanol-1-yl, PhC*(OH)CH2OPh (V). Ketyl radical V was competitively trapped by thiophenol to yield PhCH(OH)CH2OPh in competition with beta-scission to yield phenoxyl radical and acetophenone. A basis rate expression for hydrogen atom abstraction by sec-phenethyl alcohol, PhC*(OH)CH3, from thiophenol, log(k(abs)/M(-1) s(-1)) = (8.88 +/- 0.24) - (6.07 +/- 0.34)/theta, theta = 2.303RT, was determined by competing hydrogen atom abstraction with radical self-termination. Self-termination rates for PhC*(OH)CH3 were calculated using the Smoluchowski equation employing experimental diffusion coefficients of the parent alcohol, PhCH(OH)CH3, as a model for the radical. The hydrogen abstraction basis reaction was employed to determine the activation barrier for the beta-scission of phenoxyl from 1-phenyl-2-phenoxyethanol-1-yl (V): log(k beta)/s(-1)) = (12.85 +/- 0.22) - (15.06 +/- 0.38)/theta, k beta (298 K) ca. (64.0 s(-1) in benzene), and log(k beta /s(-1)) = (12.50 +/- 0.18) - (14.46 +/- 0.30)/theta, k beta (298 K) = 78.7 s(-1) in benzene containing 0.8 M 2-propanol. B3LYP/cc-PVTZ electronic structure calculations predict that intramolecular hydrogen bonding between the alpha-OH and the -OPh leaving group of ketyl radical (V) stabilizes both ground- and transition-state structures. The computed activation barrier, 14.9 kcal/mol, is in good agreement with the experimental activation barrier.  相似文献   

9.
The formation constants of dioxouranium(VI)-1,2,3-propanetricarboxylate [tricarballylate (3-), TCA] complexes were determined in NaCl aqueous solutions at 0 < or = I/mol L(-1) < or = 1.0 and t=25 degrees C, by potentiometry, ISE-[H+] glass electrode. The speciation model obtained at each ionic strength includes the following species: ML-, MLH0, ML2(4-) and ML2H3- (M = UO2(2+) and L = TCA). The dependence on ionic strength of protonation constants of 1,2,3-propanetricarboxylate and of the metal-ligand complexes was modeled by the SIT (Specific ion Interaction Theory) approach and by the Pitzer equations. The formation constants at infinite dilution are [for the generic equilibrium p UO22+ + q (L3-) + r H+ = (UO2(2+))p(L)qHr(2p-3q+r); betapqr]: log beta110 = 6.222 +/- 0.030, log beta111 = 11.251 +/- 0.009, log beta121 = 7.75 +/- 0.02, log beta121 = 14.33 +/- 0.06. The sequestering ability of 1,2,3-propanetricarboxylate towards UO2(2+) was quantified by using a sigmoid Boltzman type equation.  相似文献   

10.
Solution equilibria between the ligand ethylenediamine-N,N'-di-3-propionate (eddp(2-)) and copper(II), nickel(II) or cobalt(II) ions were studied by glass electrode pH-metric and spectrophotometric measurements in 0.1 M NaCl ionic medium at 298.0+/-0.2 K. In the concentration limits 1.0相似文献   

11.
The formation of complexes among the Curcumin, Fe(III) and Fe(II) was studied in aqueous media within the 5-11 pH range by means of UV-Vis spectrophotometry and cyclic voltammetry. When the reaction between the Curcumin and the ions present in basic media took place, the resulting spectra of the systems Curcumin-Fe(III) and Curcumin-Fe(II) presented a similar behaviour. The cyclic voltammograms in basic media indicated that a chemical reaction has taken place between the Curcumin and Fe(III) before that of the formation of complexes. Data processing with SQUAD permitted to calculate the formation constants of the complexes Curcumin-Fe(III), corresponding to the species FeCur (lob beta110 = 22.25 +/- 0.03) and FeCur(OH)- (log beta111 = 12.14 +/- 0.03), while for the complexes Curcumin-Fe(II) the corresponding formation constants of the species FeCur- (log beta110 = 9.20 +/- 0.04), FeHCur (log beta111 = 19.76 +/- 0.03), FeH2Cur+ (log beta112 = 28.11 +/- 0.02).  相似文献   

12.
Lubal P  Havel J 《Talanta》1997,44(3):457-466
Uranyl (M)-selenate (L) complex equilibria in solution were investigated by spectrophotometry in visible range and potentiometry by means of uranyl ion selective electrode. The formation ML and ML(2) species was proved and the corresponding stability constants calculated were: log beta(1) = 1.57(6) +/- 0.01(6), log beta(2) = 2.42(3) +/- 0.01(3) (I = 3.0 mol 1(-1) Na(ClO(4), SeO(4)) (spectrophotometry) at 298.2 K. Using potentiometry the values for infinite dilution (I --> 0 mol 1(-1)) were: log beta(1) = 2.64 +/- 0.01, log beta(2) 3.4 at 298.2 K. Absorption spectra of the complexes were calculated and analysed by deconvolution technique. Derivative spectrophotometry for the chemical model determination has also been successfully applied.  相似文献   

13.
Salvado V  Ribas X  Valiente M 《Talanta》1992,39(1):73-76
Complex formation between Fe(III) and tartaric acid (H(2)L) has been studied in O.5M NaNO(3) medium at 25 degrees by potentiometry at pH 4.5-11. The following complex species and corresponding values of the stability constants (charges omitted) are proposed: 2Fe + 2L + 5H(2)O --> Fe(2)(OH)(5)L(2) + 5H(+); log* beta(-522) = 4.95 Fe + L + 3H(2)O --> Fe(OH)(3)L + 3H(+); log* beta(-311) = -1.55 Fe + L + 5H(2)O --> Fe(OH)(5)L + 5H(+); log* beta(-511) = -21.2 These results are in good agreement with those reported for this system in acid. The results may be presented as the degeneration of the "core + link" mechanism observed in the acidic zone. Structures are suggested for the complex species formed.  相似文献   

14.
Daniele PG  Rigano C  Sammartano S  Zelano V 《Talanta》1994,41(9):1577-1582
The hydrolysis of iron(III) was studied potentiometrically at different ionic strengths in KNO(3) aqueous solutions, at 25 degrees C, to determine the dependence of hydrolysis constants on ionic strength (nitrate media), to check the existence of nitrate-ferric ion interactions, and to confirm the formation of high polymeric species. Under the experimental conditions 0.03 I (KNO(3)) 1M, 0.3 C 12 mM, the species Fe(OH)(2+), Fe(2)(OH)(4+)(2), Fe(OH)(+)(2) and Fe(12)(OH)(2+)(34) were found, and the hydrolysis constants log beta(11) = 2.20, log beta(12) = -2.91, log beta(22) = -5.7, log beta(12,34) = -48.9 (I = 0M) were calculated. The ionic strength dependence of hydrolysis constants is quite close to that found for several protonation and metal complex formation constants reported elsewhere.  相似文献   

15.
The second dissociation constant of salicylic acid (H2L) has been determined, at 25 degrees C, in NaCl ionic media by UV spectrophotometric measurements. The investigated ionic strength values were 0.16, 0.25, 0.50, 1.0, 2.0 and 3.0 M. The protolysis constants calculated at the different ionic strengths yielded, with the Specific Interaction Theory, the infinite dilution constant, log beta1(0) = 13.62 +/- 0.03, for the equilibrium L2- + H+ <==> HL-. The interaction coefficient between Na+ and L2-, b(Na+, L2-) = 0.02 +/- 0.07, has been also calculated.  相似文献   

16.
Napoli A 《Talanta》1968,15(2):189-198
A potentiometric and spectrophotometric investigation on the formation of aluminium(III) complexes with dipicolinic (2,6-pyridinedicarboxylic) acid at 25 degrees in aqueous 0.5M NaClO(4) medium is reported. The values of the cumulative formation constants of the two acid species HL(-) and H(2)L are log ss(1) = 4.532 +/- 0.004 and log ss(2) = 6.624 +/- 0.006. At pH < 4 and in the investigated concentration range (0.242 C(m) 0.975 mM,3.16 C(l) 5.27 mM), aluminium(III) forms two mononuclear complexes, one positively charged, with a metal/ligand molar ratio of 1:1, and the other negatively charged, with a metal/ligand molar ratio of 1:2. The two methods of investigation have yielded the following values for the cumulative formation constants: log beta(1(pot)) = 4.87 +/- 0.02; log beta(2(pot)) = 8.32 +/- 0.02 log beta(1(sp)) = 4.85 +/- 0.03. A precipitate occurs at pH 5-6. A paper electrophoretic investigation and comparison with the behaviour of the well-known iron(III) complexes, supports these findings.  相似文献   

17.
Perera WN  Hefter G 《Inorganic chemistry》2003,42(19):5917-5923
A detailed investigation of the iron(III)-cyanide and iron(III)-hydroxide systems has been made in NaClO(4) media at 25 degrees C, using combined UV-vis spectrophotometric and pH-potentiometric titrations. For the Fe(III)/OH- system, use of low total Fe(III) concentrations (< or =10 microM) and a wide pH range (0 < or = pH < or = 12.7) enabled detection of six mononuclear complexes, corresponding to the following equilibria: Fe3+(aq)+rH2O<=>Fe(OH)r(3-r)+(aq) + rH(+)(aq), where r = 1-6 with stability constants (log *beta 1r) of -2.66, -7.0, -12.5, -20.7, -30.8, and -43.4, respectively, at I = 1 M (NaClO(4)). It was also found to be possible to measure, for the first time, stability constants for most of the following equilibria: Fe3+(aq)+qCN-(aq)<=>Fe(CN)q(3-q)+(aq), despite a plethora of complicating factors. Values of log beta(1q) = 8.5, 15.8, 23.1, and 38.8 were obtained at I = 1.0 M (NaClO(4)) for q = 1-3 and 6, respectively. No reliable evidence could be obtained for the intermediate (q = 4 or 5) complexes. Similar results were obtained for both systems at I = 0.5 M(NaClO(4)). Spectra for the individual mononuclear complexes detected for Fe(III) with OH- and CN- are reported. Attempted measurements on the Fe(II)/CN- system were unsuccessful, but values of log beta(16)(Fe(CN)(6)(4-)) = 31.8 and log beta(15)(Fe(CN)(5)(3-) approximately 24 were estimated from well established electrode potential and other data.  相似文献   

18.
A hitherto unknown type of aqueous complex, ternary Ca-MIV-OH complexes (M = Zr and Th), causes unexpectedly high solubilities of zirconium(IV) and thorium(IV) hydrous oxides in alkaline CaCl2 solutions (pHc = 10-12, [CaCl2] > 0.05 mol.L(-1), and pHc = 11-12, [CaCl2] > 0.5 mol.L(-1), respectively). The dominant aqueous species are identified as Ca3[Zr(OH)6]4+ and Ca4[Th(OH)8]4+ and characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. The number of OH- ligands in the first coordination sphere detected by EXAFS, NO = 6 (6.6 +/- 1.2) for Zr and NO = 8 (8.6 +/- 1.2) for Th, are consistent with the observed slopes of 2 and 4 in the solubility curves log [M]tot vs pHc. The presence of polynuclear hydrolysis species and the formation of chloride complexes can be excluded. EXAFS spectra clearly show a second coordination shell of calcium ions. The [Zr(OH)6]2- and [Th(OH)8]4- complexes with an unusually large number of OH- ligands are stabilized by the formation of associates or ion pairs with Ca2+ ions. The number of neighboring Ca2+ ions around the [Zr(OH)6]2- and [Th(OH)8]4- units is determined to be NCa = 3 (2.7 +/- 0.6) at a distance of RZr-Ca = 3.38 +/- 0.02 A and NCa = 4 (3.8 +/- 0.5) at a distance of RTh-Ca = 3.98 +/- 0.02 A. The Ca3[Zr(OH)6]4+ and Ca4[Th(OH)8]4+ complexes have first (M-O) and second (M-Ca) coordination spheres with the Ca2+ ions bound to coordination polyhedra edges.  相似文献   

19.
Crea F  Foti C  Sammartano S 《Talanta》2008,75(3):775-785
In this paper we report a comparison on the sequestering ability of some polycarboxylic ligands towards dioxouranium(VI) (UO(2)(2+), uranyl). Ligands taken into account are mono- (acetate), di- (oxalate, malonate, succinate and azelate), tri- (1,2,3-propanetricarboxylate) and hexa-carboxylate (1,2,3,4,5,6-benzenehexacarboxylate). The sequestering ability of polycarboxylic ligands towards UO(2)(2+) was quantified by a new approach expressed by means of a sigmoid Boltzman type equation and of a empirical parameters (pL(50)) which defines the amount of ligand necessary to sequester 50% of the total UO(2)(2+) concentration. A fairly linear correlation was obtained between pL(50) or log K(110) (log K(110) refers to the equilibrium: UO(2)(2+)+L(z-)=UO(2)L((2-z)); L=generic ligand) and the polyanion charges. In order to complete the picture, a tetra-carboxylate ligand (1,2,3,4-butanetetracarboxylate) was studied in NaCl aqueous solutions at 0相似文献   

20.
A detailed investigation of the Pb(II)/OH(-) system has been made in NaClO(4) media at 25 degrees C. Combined UV-vis spectrophotometric-potentiometric titrations at [Pb(II)](T) < or = 10 microM using a long path length cell detected only four mononuclear hydroxide complexes. The values of log beta(1)(q)(), for the equilibria Pb(2+)(aq) + qH(2)O <--> Pb(OH)(q)()((2)(-)(q)()()+)(aq) + qH(+)(aq), were -7.2, -16.1, -26.5, and -38.0 for q = 1-4, respectively, at ionic strength I = 1 M (NaClO(4)). Similar results were obtained at I = 5 M (NaClO(4)). No evidence was found for higher order complexes (q > 4) even at very high [OH(-)]/[Pb(II)] ratios, nor for polynuclear species at [Pb(II)](T) < or = 10 microM. Measurements using (207)Pb-NMR and Raman spectroscopies and differential pulse polarography (DPP) provided only semiquantitative confirmation. The mononuclear Pb(OH)(q)()((2)(-)(q)()()+)(aq) complexes are the only hydrolyzed species likely to be significant under typical environmental and biological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号