首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The hydrothermal synthesis, using tris-(2-ethylamino)amine (tren) as a template, and the crystal structures of three new hybrid iron fluorides, (H3O)2·[H3tren]2·(FeF6)2·(FeF5(H2O))·2H2O (I), [H3tren]2·(FeF6)2·(FeF2(H2O)4)·8H2O (II) and [H3tren]2·(FeF6)·(F)3·H2O (III), are reported. I, II, and III are triclinic (P-1), monoclinic (P21/c) and orthorhombic (I222), respectively. The structure of I is built up from isolated FeF6 and FeF5(H2O) distorted octahedra separated by triprotonated [H3tren]3+ cations, disordered H3O+ cations and H2O molecules. In II, FeIIIF6 and neutral [FeIIF2(H2O)4] octahedra form, together with [H3tren]3+ cations, infinite (100) layers separated by extra water molecules. The structure of III consists of isolated and disordered FeF6 octahedra, fluoride anions F connected to [H3tren]3+ cations and extra fluoride anions F disordered with H2O molecules. All [H3tren]3+ cations have a “spider” type conformation. 57Fe Mössbauer characterization shows that +III valence state can only be considered for iron cations in I and III and preliminary Mössbauer results are consistent with the presence of both +II and +III valences for iron cations in II, in agreement with the crystallographic results.  相似文献   

2.
Three new organic–inorganic hybrid compounds constructed from Keggin-type polyanions and transition metal complexes, [Mn(2,2′-bipy)3]1.5[BW12O40Mn(2,2′-bipy)2(H2O)]·0.25H2O (1), [Fe(2,2′-bipy)3]1.5[BW12O40Fe(2,2′-bipy)2(H2O)]·0.5H2O (2) and [Cu2(phen)2(OH)2]2H[Cu(H2O)2{BW12O40Cu0.75(phen)(H2O)}2]·1.5H2O (3), have been hydrothermally synthesized and characterized by elemental analyses, IR, TGA and single-crystal X-ray diffraction. Compounds 1 and 2 are isostructural and both exhibit monosupporting polyoxometalate cluster structure, each of which contains a [BW12O40]5− cluster decorated by one transition metal complex. Compound 3 contains a bisupporting polyoxometalate cluster anion where two {Cu0.75(phen)(H2O)}0.75+ fragments are supported on the polyoxometalate dimer {Cu(H2O)2(BW12O40)2}8−, this represents the first bisupporting polyoxometalate cluster based on a Keggin-type polyoxometalate dimer, which are further packed together via π–π stacking contacts into an extended 1-D chain.  相似文献   

3.
Three inorganic–organic composite sandwich-type phosphotungstates [Ni(tepa)(H2O)]4H2[Ni4(H2O)2(α-B-PW9O34)2]·8H2O (1), (enH2)3[Ni2(H2O)10][Ni4(H2O)2(α-B-PW9O34)2]·en·8H2O (2) and (enH2)10[Mn4(H2O)2(α-B-PW9O34)2]2·20H2O (3) (tepa=tetraethylenepentamine and en=ethylenediamine) have been synthesized by the hydrothermal reaction of the trivacant Keggin polyoxoanion [α-A-PW9O34]9− with Ni2+ or Mn2+ ions in the presence of tepa or en and structurally characterized by IR spectra, elemental analysis, thermogravimetric analysis and variable temperature magnetic susceptibility. X-ray crystallographic analyses indicate that they all contain the classical tetra-M sandwiched polyoxoanions [M4(H2O)2(α-B-PW9O34)2]10− (M=Ni2+ or Mn2+) and nickel-organoamine cations or organoamine cations work as the charge balance ions. The tetra-M clusters in 1, 2 and 3 exhibit the familiar structural type of a β-junction at the sites of metal incorporation. The study of magnetic property of 1 is indicative of a typical ferromagnetic coupling between Ni2+ cations.  相似文献   

4.
Assembly of 5-sulfosalicylic acid (H3L) and d10 transition metal ions (CdII, AgI) with the neutral N-donor ligands produces five new complexes: [Cd2(HL)2(4,4′-bipy)3]n·2nH2O (1), {[Cd2(μ2-HCO2)2(4,4′-bipy)2(H2O)4][Cd(HL)2(4,4′-bipy)(H2O)2]}n (2), {[Cd(4,4′-bipy)(H2O)4][HL]·H2O}n (3), [Cd(HL)(dpp)2(H2O)]n·4nH2O (4), {[Ag(4,4′-bipy)][Hhbs]}n (5) (4,4′-bipy=4,4′-bipyridine, dpp=1,3-di(pyridin-4-yl)propane, H2hbs=4-hydroxybenzenesulfonic acid, the decarboxylation product of H3L). Complex 1 adopts a 5-connected 3D bilayer topology. Complex 2 has the herring-bone and ladder chain, which are extended to a 3D network via hydrogen bonding. In 3–4 complexes, 3 is a 3D supermolecular structure formed by polymeric chains and 2D network of HL2−, while 4 gives the double-stranded chains. In 5, ladder arrays are stacked with the 2D networks of Hhbs anions in an –ABAB– sequence. Complexes 1–4 display green luminescences in solid state at room temperature, while emission spectra of 3 and 4 show obvious blue-shifts at low temperature.  相似文献   

5.
A novel vacant heteropolytungstate of skeleton X2W21 derived from the polytungstate [H6X2W22O76]8– (X = Sb,Bi). Five heteropolytungstates Na8[H6Sb2W21O73]·16.5 H2O, Na8[H6Sb2W21O73]·19 H2O, Na8[H6Bi2W21O73]·16.5 H2O, Li2Na6[H6Sb2W22O76]·14.5 H2O, and Na5[H7Sb2NiW21O73(H2O)3]·20 H2O were prepared and studied by X-ray diffraction. The values of isotropic temperature factors of the external tungsten atom and of its three terminal oxygen atoms were compared to those of same-type atoms, firstly of the same polytungstate, and secondly inside this five-compound family. This analysis led to the conclusion that the vacant assembly X2W21O73 (X = Sb,Bi) does exist and that the vacancy may be filled up with a first row transition metal such as nickel. To cite this article: Y. Jeannin, C. R. Chimie 7 (2004).  相似文献   

6.
Treatment of [RuHCl(CS)(PPh3)3] with Hg(o-C6H4N=NC6H5)2 affords [RuCl(CS)(η2C,N-o-C6H4N=NC6H5)(PPh3)2] (1) in good yield, where the cyclometallated azobenzene ligand coordinates through an ortho-C and one azo-N to give a five-membered chelate ring. Reaction of 1 with AgNO3 followed by NaBr or NaI affords the chloride-exchanged products [RuX(CO)(η2C,N-o-C6H4N=NC6H5)(PPh3)2] (2, 3), whereas reaction of 1 with AgOC(O)Me or NaS2CNEt2·2H2O gives the halide mono-phosphine-substituted complexes [Ru(CS)(LL)(η2C,N-o-C6H4NNC6H5)(PPh3)] (4, 5). In the solid-state structures of 1 and 3 there are significant changes in the bond lengths for the cyclometallated azobenzene ligand are observed relative to free azobenzene. These are discussed, with the aid of spectroscopic and crystallographic data, in terms of a cis-push–pull effect.  相似文献   

7.
Three thiophene-2,5-dicarboxylic acid (H2tdc) complexes of copper(II) with 2-aminomethylpyridine (ampy), {[Cu2(μ-tdc)2(ampy)2]·2DMF}n (1), ethylenediamine (en), trans-[Cu(H2O)2(en)2](tdc) (2) and 4-methylimidazole (4-meim), trans-[Cu(H2O)2(4-meim)4](tdc)·4H2O (3) have been synthesized and characterized by spectral (IR, UV–Vis), thermal analyses and X-ray diffraction techniques. In 1, thiophene-2,5-dicarboxylate acts as a bridging bis(bidentate) ligand through four carboxylate oxygen atoms forming a 1-D zigzag polymeric chain, whereas in 2 and 3 the tdc dianion behaves as a counter ion. In all cases, the Cu(II) centers have an octahedral coordination geometry. Three-dimensional frameworks are constructed though hydrogen bonding and/or C–H···π interactions in the three complexes.  相似文献   

8.
Six new complexes constructed by 5-sulfosalicylic acid and bipyridyl-like ligands (2,2′-bipy and 1,10-phen), namely [Cu4(OH)2(ssal)2(phen)4 · 7H2O] (1), [Cu4(OH)2(ssal)2(bipy)4 · 2H2O] (2), [Cd(Hssal)(bipy)] (3), [Cd(HL)2(phen)2] (4), [Cr(ssal)(bipy)(H2O)2 · 2H2O] (5) and [Cr(ssal)(phen)2] (6) (H3ssal = 5-sulfosalicylic acid, H2L = p-hydroxybenzenesulfonic acid, bipy = 2,2′-bipy, phen = 1,10-phen) were prepared under hydrothermal conditions and their structures were determined by single-crystal X-ray diffraction. Complexes 1 and 2 are both tetranuclear copper complexes with a stepped topology. In complex 3, a new coordination mode of the Hssal2− group is reported in this work. During the synthetic process of complex 4, in situ decarboxylation of 5-sulfosalicylic acid into p-hydroxybenzenesulfonic acid is involved. Two chromium 5-sulfosalicylates (5 and 6) are reported for the first time. These new complexes display different supramolecular structures by O–H?O, C–H?O hydrogen bonds as well as π?π, C–H?π and O?π interactions. The results of magnetic determination show that ferromagnetic interactions exist in complex 1, however, antiferromagnetic interactions exist in 2.  相似文献   

9.
The combined use of 4,4′-bipyridine (4,4′-bipy) and 2-benzothiazolylthioacetic acid (HBTTAA) as ligands with Mn(II), Cd(II), Co(II) and Cu(II) ions afforded six polymeric complexes, namely {[Mn3(BTTAA)4(4,4′-bipy)4](ClO4)2 · 2H2O}n (1), [Mn(BTTAA)2(4,4′-bipy)2]n (2), [Cd(BTTAA)2(4,4′-bipy)2]n (3), [Cd(BTTAA)(4,4′-bipy)(NO3)(H2O)]n (4), [Co(BTTAA)2(4,4′-bipy)(H2O)2]n (5) and [Cu(BTTAA)2(4,4′-bipy)]n (6). All these complexes have been characterized by a combination of analytical, spectroscopic and crystallographic methods. Complex 1 is a novel 2D network formed by two different 44 grid networks, whereas isomorphous complexes 2 and 3 exhibit a 2Dl coordination architecture formed by the same 44 grid network. In 46, extended 1D chains are formed, with the 4,4′-bipy molecules acting as rigid rod-like links between adjacent metal centers. The carboxylato groups of BTTAA in these complexes exhibit four different coordination modes, namely monodentate, chelating, bridging and bridging-chelating modes. The magnetic properties of 1, 2, 5 and 6 were investigated in the temperature range 2.0–300.0 K. Variable temperature magnetic susceptibility measurements show weak antiferromagnetic interactions in these complexes.  相似文献   

10.
The compounds (Hbipy)2[Co(bipy)2(H2O)4]2(CoW12O40)·2bipy·7H2O (1) and [Ni2(Hbipy)2(bipy)(H2O)4(H2W12O40)]·5H2O (2) (bipy = 4,4-bipyridine) were synthesized hydrothermally and characterized by elemental analysis, IR spectroscopy, TG analyses, solid ultraviolet diffuse spectroscopy and single crystal X-ray diffraction method. In 1 the complex ions, [Co(bipy)2(H2O)4]2+, construct a supramolecular layer through π-π stacking interaction. The heteropolyanions with central Co atom and supramolecular layers are linked by hydrogen bonds. In 2 a 2D structure is formed from metatungstate anions and binuclear Ni-bipy complexes through the coordination of metatungstate anions and bipy to Ni ions. Between the layers and bipyridine molecules are the hydrogen bond interactions. The formation of 1 and 2 shows that the solution acidity and metal ions influence greatly the structure of the compounds. Solid ultraviolet diffusion results indicate that the compounds 1 and 2 are potential semiconductor materials. In 1 and 2 there exists a weak antiferromagnetic interaction.  相似文献   

11.
The new tetranuclear complexes [Fe3Ln(μ3-O)2(CCl3COO)8(H2O)(THF)3]·THF (Ln = CeIII (1), PrIII (2), NdIII (3)) and [Fe3Ln(μ3-O)2(CCl3COO)8(H2O)(THF)3]·THF·C7H16 (Ln = SmIII (4), EuIII (5), GdIII (6), TbIII (7), DyIII (8), HoIII (9), LuIII (10) and YIII (11)) have been prepared. All compounds were prepared by the reaction between [Fe2BaO(CCl3COO)6(THF)6] and the corresponding LnIII nitrate salt. The crystal structures of 1–4, 8 and 9 have been determined; these isostructural molecules have a non-planar {Fe3Ln(μ3-O)2} “butterfly” core. Magnetic susceptibility measurements show dominant intramolecular antiferromagnetic exchange interactions for all the complexes. 57Fe Mössbauer spectroscopy shows three different environments for the FeIII metal ions, all in their high-spin state S = 5/2 (confirming that no electron transfer from CeIII to FeIII occurs in 1). At the time scale of the Mössbauer spectroscopy (about 10−7 s), evidence of magnetization blocking, i.e. slow relaxation of the magnetization, is observed below 3 K for 7, which was confirmed by ac susceptibility measurements.  相似文献   

12.
[2 + 3] Cycloaddition reactions of the di(azido)-PdII complex trans-[Pd(N3)2(PPh3)2] (1) with an organonitrile RCN (2), under heating for 12 h, give the bis(tetrazolato) complexes trans-[Pd(N4CR)2(PPh3)2] (3) [R = Me (3a), Ph (3b), 4-ClC6H4 (3c), 4-FC6H4 (3d), 2-NC5H4 (3e), 3-NC5H4 (3f), 4-NC5H4 (3g)]. The reaction of trans-[Pd(N3)2(PPh3)2] (1) with propionitrile (2h) also affords, apart from trans-[Pd(N4CEt)2(PPh3)2] (3h), the unexpected mixed cyano-tetrazolato complex trans-[Pd(CN)(N4CEt)(PPh3)2] (3h′) which is derived from the reaction of the bis(tetrazolato) 3h with propionitrile, with concomitant formation of 5-ethyl-1H-tetrazole, via a suggested unusual oxidative addition of the nitrile to PdII. The [2 + 3] cycloadditions of [Pd(N3)2(PTA)2] (4) (PTA = 1,3,5-triaza-7-phosphaadamantane) with RCN (2), under heating for 12 h, give the bis(tetrazolato) complexes trans-[Pd(N4CR)2(PTA)2] (5) [R = Ph (5a), 2-NC5H4 (5b), 3-NC5H4 (5c), 4-NC5H4 (5d)]. All these reactions are greatly accelerated by microwave irradiation (1 h, 125 °C, 300 W). Taking advantage of the hydro-solubility of PTA, a simple liberation of 5-phenyl-1H-tetrazole from the coordination sphere of trans-[Pd(N4CPh)2(PTA)2] (5a) was achieved. The complexes were characterized by IR, 1H, 13C{1H} and 31P{1H} NMR spectroscopies, ESI+-MS, elemental analyses and, for 3b, also by X-ray structure analysis. Weak agostic interactions between the CH groups of the triphenylphosphines and the palladium(II) centre were found.  相似文献   

13.
The synthesis and crystal structural characterization of the compound of formula {[FeII(phen)3]2[Fe2IIIox5]}·11H2O (1) has been reported. The most interesting feature of the solid state structure of 1 consists in the occurrence of decanuclear water clusters made up of self-assembled cyclic hexameric water clusters with a quasi-planar conformation, unclosed trinuclear clusters and individual water molecules. The decanuclear water clusters are connected to the host lattices via an extensive net of strong hydrogen bonds that finally lead to an extended 3D supramolecular organization, wherein hexameric water clusters interconnected with dodecameric hybrid water–Ooxalate clusters can be identified. The comparison of this supramolecular architecture with that found in the already known compound of formula [Fe(bpm)3]2[Fe2(ox)5]·8H2O (2) allows some preliminary observations on the design and control of water cluster nuclearity and conformation.  相似文献   

14.
The article describes the synthesis and single-crystal X-ray analysis of two sulfato and one thiocyanato copper(II) complex with 2-acetylpyridine S-methylisothiosemicarbazone (HL) of the formulae [Cu(HL)SO4(H2O)]·H2O (1), [Cu2(HL)2(μ-SO4)2]·2H2O (2) and [Cu(HL)(NCS)(SCN)] (3), as well as the structure of the protonated ligand H2L+I. Complexes 1 and 2 were obtained from the reaction of aqueous/methanolic CuSO4·5H2O and ethanolic/methanolic H2L+I solutions, respectively. Complex 3 was synthesized by the reaction of methanolic solutions of Cu(ClO4)2·6H2O, the ligand and NH4SCN, with the addition of triethyl orthoformate. All three complexes have a slightly deformed square-pyramidal structure (τav = 0.15) with the tridentate NNN neutral ligand in the basal plane. In complexes 1 and 3 the apical position is occupied by the oxygen atom of the monodentate SO4 group, or the sulfur atom of the SCN group. Thanks to the hydrogen bonds, complex 3 may be thought of as having a pseudo-dimeric structure. In the authentic centrosymmetric dimer 2, the oxygen atoms of both SO4 groups occupy also the apical position of both coordination polyhedra, as well as an equatorial position. Complexes 1 and 3 have μeff values characteristic of magnetically isolated mononuclear Cu(II) complexes. In contrast to them, complex 2 has a μeff value of 1.57 BM, which is in agreement with its dinuclear structure. All the complexes, in addition to the X-ray analysis and magnetic measurements, were characterized by IR and UV–Vis spectroscopy and by thermal analysis.  相似文献   

15.
Five coordination polymers, namely [Cd(L3)2]·H2O (1), [Zn(L3)2] (2), [Co(L3)2] (3), [Ni(L3)2] (4) and [Cu2(L3)2]·3H2O (5), where L3 = 3,5-bis(pyridin-3-ylmethoxy)benzoic acid, have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compound 1 is a binodal (3,4)-connected net with (63)(66) topology. Compounds 24 are isostructural and described by the uninodal (4,4)-connected net with (44 · 62) Schläfli symbol. The structure of 5 is a 2D binodal (6,3) net. In addition, the luminescent properties of compounds 1 and 2 have been studied in the solid state at room temperature.  相似文献   

16.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

17.
Three polyoxotungstates, Na8[Cu(H2O)2(H2W12O42)]·30H2O (1), Na8[Cd(H2O)2(H2W12O42)]·20H2O (2), and Na7.4[Cd1.3(H2O)2(H2W12O42)]·24H2O (3), were synthesized and characterized by elemental and thermogravimetric (TG)analysis, infrared spectroscopy and X-ray single-crystal analysis. Both complexes 1 and 2 exhibit one-dimensional structure with two neighboring paradodecatungstate-B clusters, [H2W12O42]10−, linked by [Cu(H2O)2]2+ or [Cd(H2O)2]2+ units, while complex 3 displays a two-dimensional network structure. The electrochemical behaviors of complexes 1 and 3 were investigated in the buffer solution of pH 4.8. The results of electrocatalysis reveal that the reduced species of complexes 1 and 3 are electrocatalytically active for the reduction of nitrite. Complex 1 exhibits the electrocatalytic activity for the reduction of nitrate as well. The surface photovoltage spectroscopy (SPS) and electric field-induced SPS (EFISPS) measurements show that the surface photovoltage behavior of complex 1 is complicated while complex 3 bears the property of n-type semiconductor.  相似文献   

18.
Five novel heterobimetallic compounds [Cu(bpzm)2Hg(SCN)4]n (1), [Cu(bdmpzm)2(μ-SCN)Hg(SCN)3] (2), [Cu(pybzim)2(μ-SCN)Hg(SCN)3]·H2O (3), [Cu(bipy)2(μ-SCN)Hg(SCN)3][Cu(bipy)2(μ-SCN)2Hg(SCN)2] (4) and [Cu(bipy)(NCS)]2[Hg(SCN)4] (5) have been synthesized and structurally characterized (bpzm-bis(pyrazol-1-yl)methane, bdmpzm-bis(3,5-dimethylpyrazol-1-yl)methane, pybzim-2-(2-pyridyl)benzimidazole, phen-1,10-phenantroline and bipy-2,2′-bipyridine). The compounds 2, 3, 4 and 5 are molecular complexes, whereas 1 is an alternating 1-D zigzag chain of [Cu(bpzm)2]2+ and Hg(SCN)4]2− moieties in which the metal atoms are bridged via thiocyanate ions. The polymer 1 has been studied by magnetic measurement.  相似文献   

19.
The reactions of the [Mo33-Q)(μ2-Q)3(H2O)3(C2O4)3]2− complex (Q = S or Se) with CuX salts (X = Cl, Br, I, or SCN) in water produce the cuboidal heterometallic clusters [Mo3(CuX)(μ3-Q)4(H2O)3(C2O4)3]2−, which were isolated as the potassium and tetraphenylphosphonium salts. Two new compounds, K2[Mo3(CuI)(μ3-S)4(H2O)3(C2O4)3]·6H2O and (PPh4)2[Mo3(CuBr)(μ3-S)4(H2O)3(C2O4)3]·7H2O, were structurally characterized. All compounds were characterized by elemental analysis and IR spectroscopy. The K2[Mo3(CuI)(μ3-Se)4(H2O)3(C2O4)3] compound was characterized by the 77Se NMR spectrum; the (PPh4)2[Mo3(CuI)(μ3-S)4(H2O)3(C2O4)3], (PPh4)2[Mo3(CuI)(μ3-Se)4(H2O)3(C2O4)3] and K2[Mo3(CuSCN)(μ3-S)4(H2O)3(C2O4)3]·7H2O compounds, by electrospray mass spectra. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1639–1644, September, 2007.  相似文献   

20.
Reactions of ligand 5-(1H-imidazol-4-yl)methylaminoisophthalic acid (H3L) with varied lanthanide metal salts led to the formation of five scalelike 2D layered complexes {[Ln(H2L)(HL)(H2O)2]·H2O}n [Ln(III) = Pr(III) (1), Nd(III) (2), Sm(III) (3), Gd(III) (4), Tb(III) (5)]. The single crystal X-ray diffraction analyses revealed that five complexes crystallized in the same monoclinic space group C2/c are isomorphous and isostructural, and the 2D networks are further connected by hydrogen bonds and π–π interactions resulting in formation of 3D structures. Investigations on the visible luminescent property of the complexes demonstrate that compounds 3 and 5 show characteristic emissions of Sm(III) and Tb(III) in the solid state at room temperature, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号