首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
《中国物理 B》2021,30(10):100302-100302
The spin transport properties are theoretically investigated when a quantum dot(QD) is side-coupled to Majorana bound states(MBSs) driven by a symmetric dipolar spin battery. It is found that MBSs have a great effect on spin transport properties. The peak-to-valley ratio of the spin current decreases as the coupling strength between the MBS and the QD increases. Moreover, a non-zero charge current with two resonance peaks appears in the system. In the extreme case where the dot–MBS coupling strength is strong enough, the spin current and the charge current are both constants in the non-resonance peak range. When considering the effect of the Zeeman energy, it is interesting that the resonance peak at the higher energy appears one shoulder. And the shoulder turns into a peak when the Zeeman energy is big enough. In addition, the coupling strength between the two MBSs weakens their effects on the currents of the system. These results are helpful for understanding the MBSs signature in the transport spectra.  相似文献   

2.
We have studied a two-electron quantum dot molecule in a magnetic field. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate two lowest energy levels of the two-electron quantum dot molecule in a magnetic field. Our results show that the electron interactions are significant, as they can change the total spin of the two-electron ground state of the system by adjusting the magnetic field between S = 0 and S = 1. The energy difference AE between the lowest S = 0 and S = 1 states is shown as a function of the axial magnetic field. We found that the energy difference between the lowest S = 0 and S = 1 states in the strong-B S = 0 state varies linearly. Our results provide a possible realization for a qubit to be fabricated by current growth techniques.  相似文献   

3.
We have investigated theoretically the field-driven electron transport through a single-quantum-well semiconductor heterostructure with spin-orbit coupling.The splitting of the asymmetric Fano-type resonance peaks due to the Dresselhaus spin-orbit coupling is found to be highly sensitive to the direction of the incident electron.The splitting of the Fano-type resonance induces the spin-polarization dependent electron current.The location and the line shape of the Fano-type resonance can be controlled by adjusting the energy and the direction of the incident electron,the oscillation frequency,and the amplitude of the external field.These interesting features may be used to devise tunable spin filters and realize pure spin transmission currents.  相似文献   

4.
We present an investigation of the one-dimensional ferromagnetism in Au–Co nanowires deposited on the Cu(110)surface. By using the density functional theory, the influence of the nonmagnetic copper substrate Cu(110) on the magnetic properties of the bimetallic Au–Co nanowires is studied. The results show the emergence of magnetic anisotropy in the supported Au–Co nanowires. The magnetic anisotropy energy has the same order of magnitude as the exchange interaction energy between Co atoms in the wire. Our electronic structure calculation reveals the emergence of new hybridized bands between Au and Co atoms and surface Cu atoms. The Curie temperature of the Au–Co wires is calculated by means of kinetic Monte Carlo simulation. The strong size effect of the Curie temperature is demonstrated.  相似文献   

5.
Interaction between Rydberg atoms can be used to control the properties of interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Here we investigate the effect of the Rydberg-dressing interaction on the ground-state properties of a Bose–Einstein condensate imposed by Raman-induced spin–orbit coupling. We find that,in the case of SU(2)-invariant s-wave interactions, the gas is only in the plane-wave phase and the zero-momentum phase is absent. In particular, we also predict an unexpected magnetic stripe phase composed of two plane-wave components with unequal weight when s-wave interactions are non-symmetric, which originates from the Rydberg-dressing interaction.  相似文献   

6.
《中国物理 B》2021,30(6):60310-060310
We have investigated the dynamics of bright solitons in a spin–orbit coupled spin-1 Bose–Einstein condensate analytically and numerically. By using the hyperbolic sine function as the trial function to describe a plane wave bright soliton with a single finite momentum, we have derived the motion equations of soliton's spin and center of mass, and obtained its exact analytical solutions. Our results show that the spin–orbit coupling couples the soliton's spin with its center-of-mass motion, the spin oscillations induced by the exchange of atoms between components result in the periodical oscillation of center-of-mass, and the motion of center of mass of soliton can be viewed as a superposition of periodical and linear motions. Our analytical results have also been confirmed by the direct numerical simulations of Gross–Pitaevskii equations.  相似文献   

7.
We study the pumped spin current of an interacting quantum dot tunnel coupled to a single lead in the presence of electron spin resonance (ESR) field. The spin decoherence in the dot is included by the Bffttiker approach. Using the nonequilibrium Green's function technique, we show that ESR-induced spin flip can generate finite spin current with no charge transport. Both the Coulomb interaction and spin decoherence decrease the amplitude of spin current. The dependence of pumped spin current on the intensity and frequency of ESR field, and the spin decoherence is discussed.  相似文献   

8.
A nanodiamond with an embedded nitrogen-vacancy(NV) center is one of the experimental systems that can be coherently manipulated within current technologies. Entanglement between NV center electron spin and mechanical rotation of the nanodiamond plays a fundamental role in building a quantum network connecting these microscopic and mesoscopic degrees of motions. Here we present a protocol to asymptotically prepare a highly entangled state of the total quantum angular momentum and electron spin b...  相似文献   

9.
We propose two possible spin valves based on a zigzag silicene nanoribbon(ZSR) ferromagnetic junction. By using the Landauer–B u¨tikker formula, we calculate the spin-resolved conductance spectrum of the system and find that the spin transport is crucially dependent on the band structure of the ZSR tuned by a perpendicular electric field. When the ZSR is in the topological insulator phase under a zero electric field, the low-energy spin transport and its ON and OFF states in the tunneling junction mainly rely on the valley valve effect and the edge state of the energy band, which can be electrically modulated by the Fermi level, the spin–orbit coupling, and the local magnetization. When a nonzero perpendicular electric field is applied, the ZSR is a band insulator with a finite energy gap, the spin switch phenomenon is still preserved in the device and it does not come from the valley valve effect, but from the energy gap opened by the perpendicular electric field. The proposed device might be designed as electrical tunable spin valves to manipulate the spin degree of freedom of electrons in silicene.  相似文献   

10.
杨志红  杨永宏  汪军 《中国物理 B》2012,21(5):57402-057402
We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin-orbit coupling considered in one of the superconducting leads.It is found that an angle-resolved spin supercurrent flows through the junction and a nonzero interfacial spin Hall current driven by the superconducting phase difference also appears at the interface.The physical origin of this is that the Rashba spin-orbit coupling can induce a triplet order parameter in the s-wave superconductor.The interfacial spin Hall current dependences on the system parameters are also discussed.  相似文献   

11.
The electronic transport properties of zigzag graphene nanoribbons (ZGNRs) through covalent functionalization of gold (Au) atoms is investigated by using non-equilibrium Green’s function combined with density functional theory. It is revealed that the electronic properties of Au-doped ZGNRs vary significantly due to spin and its non-inclusion. We find that the DOS profiles of Au-adsorbed ZGNR due to spin reveal very less number of states available for conduction, whereas non-inclusion of spin results in higher DOS across the Fermi level. Edge Au-doped ribbons exhibit stable structure and are energetically more favorable than the center Au-doped ZGNRs. Though the chemical interaction at the ZGNR–Au interface modifies the Fermi level, Au-adsorbed ZGNR reveals semimetallic properties. A prominent qualitative change of the I–V curve from linear to nonlinear is observed as the Au atom shifts from center toward the edges of the ribbon. Number of peaks present near the Fermi level ensures conductance channels available for charge transport in case of Au-center-substituted ZGNR. We predict semimetallic nature of the Au-adsorbed ZGNR with a high DOS peak distributed over a narrow energy region at the Fermi level and fewer conductance channels. Our calculations for the magnetic properties predict that Au functionalization leads to semiconducting nature with different band gaps for spin up and spin down. The outcomes are compared with the experimental and theoretical results available for other materials.  相似文献   

12.
吴歆宇  韩伟华  杨富华 《物理学报》2019,68(8):87301-087301
在小于10 nm的沟道空间中,杂质数目和杂质波动范围变得十分有限,这对器件性能有很大的影响.局域纳米空间中的电离杂质还能够展现出量子点特性,为电荷输运提供两个分立的杂质能级.利用杂质原子作为量子输运构件的硅纳米结构晶体管有望成为未来量子计算电路的基本组成器件.本文结合安德森定域化理论和Hubbard带模型对单个、分立和耦合杂质原子系统中的量子输运特性进行了综述,系统介绍了提升杂质原子晶体管工作温度的方法.  相似文献   

13.
We theoretically explore the spin transport through nano-structures consisting of two serially coupled single-molecular magnets (SMM) sandwiched between two nonmagnetic electrodes. We find that the magnetization of SMM can be controlled by the spin transfer torque with respect to the bias voltage direction, and the electron current can be switched on/off in different magnetic structures. Such a manipulation is performed by full electrical manner, and needs neither external magnetic field nor ferromagnetic electrodes in the tunneling junction. The proposal device scheme can be realized with the use of the present technology [6] and has potential applications in molecular spintronics or quantum information processing.  相似文献   

14.
We investigate the equilibrium spin transport in a ferromagnet/noncentrosymmetric superconductor (FM/NCS) junction where the NCS has a dominant triplet order parameter and helical edge state. Based on the symmetry analysis and numerical calculation, we demonstrate that there is a nonzero spin supercurrent flowing in the junction, which stems from the exchange coupling between the FM magnetization and triplet Cooper-pair spin. It is also found that a transverse spin current other than the helical edge spin current is flowing along the interface of the junction, and its polarization is related to the longitudinal spin supercurrent. Besides, an equilibrium Hall current is also shown to flow along the junction’s interface due to the broken time-reversal symmetry from the FM.  相似文献   

15.
We report a theoretical study on spin transport in the hybrid Josephson junction composed of singlet s-wave and triplet p-wave superconductor. The node of the triplet pair potential is considered perpendicular to the interface of the junction. Based on a symmetry analysis, we predict that there is no net spin density at the interface of the junction but instead a transverse mode-resolved spin density can exist and a nonzero spin current can flow transversely along the interface of the junction. The predictions are numerically demonstrated by means of the lattice Matsubara Green's function method. It is also shown that, when a normal metal is sandwiched in between two superconductors, both spin current and transverse mode-resolved spin density are only residing at two interfaces due to the smearing effect of the multimode transport. Our findings are useful for identifying the pairing symmetry of the p-wave superconductor and generating spin current.  相似文献   

16.
邵怀华  郭丹  周本良  周光辉 《中国物理 B》2016,25(3):37309-037309
We address velocity-modulation control of electron wave propagation in a normal/ferromagnetic/normal silicene junc tion with local variation of Fermi velocity, where the properties of charge, valley, and spin transport through the junction ar investigated. By matching the wavefunctions at the normal-ferromagnetic interfaces, it is demonstrated that the variation of Fermi velocity in a small range can largely enhance the total conductance while keeping the current nearly fully valley and spin-polarized. Further, the variation of Fermi velocity in ferromagnetic silicene has significant influence on the valley and spin polarization, especially in the low-energy regime. It may drastically reduce the high polarizations, which can b realized by adjusting the local application of a gate voltage and exchange field on the junction.  相似文献   

17.
李永辉  闫强  周丽萍  韩琴 《物理学报》2015,64(5):57301-057301
运用第一性原理密度泛函理论(DFT)和非平衡格林函数(NEGF)方法, 研究了[111]Au纳米线与1, 4-二硫苯酚(DTB)构成的分子结的电子输运性质. 构建并优化不同的Au-DTB接触构型, 计算发现: 尖端顶位构型最利于电流输运; 非对称构型大多具有很好的整流特性(最大整流比为25.6); 部分结构出现双重负微分电阻(NDR)效应. 分析表明, 整流效应主要源于非对称接触构型两端S-Au键的稳定性差别; 尖端金原子与硫原子的耦合能级中, 近费米面的能级对低压区电子传输起主要作用; 电压增大, 离费米面较远的能级对输运起主导作用, DTB的本征能级也逐渐参与, 这一转变致使电流出现两峰一谷的双重NDR效应.  相似文献   

18.
李竟成  赵爱迪  王兵 《物理学报》2015,64(7):76803-076803
通过低温超高真空扫描隧道显微镜及其谱学方法研究并展示了分子配体在调控表面吸附的单个八乙基钴卟啉(CoOEP)分子的电子态和输运性质中的重要作用. 通过单分子剪裁可以脱去该分子外围的甲基, 并在中心钴原子的微分电导谱中观察测到d轨道共振到近藤共振的演变. 实验结果结合第一性原理的理论计算研究表明, 在脱去甲基前后中心钴原子的化学环境和磁矩均未发生显著变化, 这一演变可以通过一个简化模型来阐释并被归结为脱去甲基后分子配体与衬底成键改变了体系隧穿参数所导致. 此外, 实验结果表明CoOEP分子配体的输运性质可受到分子间距离和范德华相互作用的显著调控. 在CoOEP低聚体中位于分子之间的乙基被抬高, 同时在其微分电导谱谱中0–0.8 V区域内新出现一个强的共振峰. 这一新的共振峰表现出等间距的多峰细节, 其峰间距与卟啉环和乙基之间的C–C键伸缩模式能量符合. 这一新共振峰的出现被归结为由于分子局部与衬底耦合减弱形成双结隧穿体系所导致的振子态隧穿峰.  相似文献   

19.
Ming-Lang Wang 《中国物理 B》2022,31(7):77303-077303
The understanding of the influence of electrode characteristics on charge transport is essential in the field of molecular electronics. In this work, we investigate the electronic transport properties of molecular junctions comprising methylthiol-terminated permethyloligosilanes and face-centered crystal Au/Ag electrodes with crystallographic orientations of (111) and (100), based on the ab initio quantum transport simulations. The calculations reveal that the molecular junction conductance is dominated by the electronic coupling between two interfacial metal-S bonding states, which can be tuned by varying the molecular length, metal material of the electrodes, and crystallographic orientation. As the permethyloligosilane backbone elongates, although the σ conjugation increases, the decreasing of coupling induced by the increasing number of central Si atoms reduces the junction conductance. The molecular junction conductance of methylthiol-terminated permethyloligosilanes with Au electrodes is higher than that with Ag electrodes with a crystallographic orientation of (111). However, the conductance trend is reversed when the electrode crystallographic orientation varies from (111) to (100), which can be ascribed to the reversal of interfacial coupling between two metal-S interfacial states. These findings are conducive to elucidating the mechanism of molecular junctions and improving the transport properties of molecular devices by adjusting the electrode characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号