首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Decomposition products of a solid propellant are considered as a possible fuel in an airbreathing pulse detonation engine (PDE). However, these decomposition products contain not only gaseous species but also a significant amount of solid carbon particles. Whether performance can be improved by burning these particles is investigated numerically. Thermodynamic calculations allow predicting the quantity of additional air required for optimum performance. Gasdynamic numerical simulations indicate that particle burning has an effect on the pressure impulse on the thrust wall. The particle size determines the detonation structure, according to the model of hybrid detonations, thus governing the delay and rate of heat release from particle combustion behind the detonation front. In the situation investigated here, the particles are incompletely burnt inside a 0.6-m-long tube. As a result, smaller particles ( ≤ 5μm) contribute to an increase in the impulse, by up to 6%. However, larger particles either have a negligible effect on the pressure impulse, if around 10 μm, or result in a decrease, if around 20 μm. Overall, the calculations show that the best efficiency is obtained for this fuel by diluting the gaseous decomposition products with an additional quantity of air, allowing for incomplete particle combustion rather than letting them behave as if inert, absorbing part of the energy released by gaseous combustion.This paper was based on a work that was presented at the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, Canada, July 31–August 5, 2005.  相似文献   

2.
Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m2 h (0.027–0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard.

Textile residues showed different combustion characteristics when compared to typical waste materials at low air flow rates below 819 kg/m2 h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200–1600 kg/m2 h (0.272–0.363 m/s), the bed had a maximum burning rate of about 240 kg/m2 h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density.  相似文献   


3.
A study on jet initiation of detonation using multiple tubes   总被引:1,自引:0,他引:1  
K. Ishii  T. Tanaka 《Shock Waves》2005,14(4):273-281
A detonator consisting of a dense bundle of small-diameter tubes (4.4–19 mm) is tested experimentally using stoichiometric mixtures of hydrogen–oxygen and hydrogen–air. Tests are conducted in a 5,200-mm long detonation tube fitted with a schlieren photograph section and smoked foil to record the deflagration to detonation (DDT) transition. It is confirmed that the flame jet emanating from the tube assembly causes detonation initiation immediately downstream of the detonator, with little dependence on the size of the detonation tube. For the fuel–air mixture, the insertion of Shchelkin spirals into each of the smaller tubes enhances the development of the turbulent flame jet, leading to a shorter DDT distance. Multi-point spark ignition is also shown to provide a further reduction in the DDT distance compared to single-point ignition. PACS 47.40.-x; 47.40.Nm; 47.70.Fw; 82.40.-g; 82.40.Fp  相似文献   

4.
Self-ignition and ignition of aluminum powders in shock waves   总被引:1,自引:0,他引:1  
Ignition of fine aluminum powders in reflected shock waves has been studied. Two ignition regimes are found: self-ignition observed at temperatures higher than 1800 K and “low-temperature” ignition at temperatures of 1000–1800 K. The possibility of initiating the ignition of aluminum powders in air using combustible liquids has been studied too. Received 4 December 2000 / Accepted 30 May 2001  相似文献   

5.
The processes of sampling (aspiration) to an input tube of an aspiration probe from an ambient air flow are studied numerically. The air flow is simulated on the basis of three-dimensional Navier-Stokes equations for an incompressible fluid. The method proposed allows calculation of the aspiration efficiency in the case of rather complicated shapes of the limiting trajectories of the particles. Dependences of the aspiration efficiency on the mean velocity of suction of air into the tube and the size of particles for a given free-stream velocity are obtained. Research Institute of Aerobiology, State Research Center of Virusology and Biotechnology “Vector,” Novosibirsk Region, Kol’tsovo 633159. Institute of Computing Technologies, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 5, pp. 113–122, September–October, 1999.  相似文献   

6.
A mathematical model for a projectile shot at low pressures in the space behind the projectile space is developed. The pressure rise is limited because of the nonsimultaneity of propellant ignition and combustion and the discharge of the propellant combustion products through the gap between the projectile and the walls of the gun barrel. The kinetic characteristics of flame propagation over the propellant particles are determined. A comparison of calculation and experimental data is performed. The calculation results are used in designing 2A85 self-propelled launchers and upgrading 2A30 self-propelled launchers. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 6, pp. 44–49, November–December, 2007.  相似文献   

7.
C. Wang  Z. Y. Han  M. Situ 《Shock Waves》2006,15(2):129-135
The high-speed combustible gas ignited by a hot gas jet, which is induced by shock focusing, was experimentally investigated. By use of the separation mode of shock tube, the test section of a single shock tube is split into two parts, which provide the high-speed flow of combustible gas and pilot flame of hot gas jet, respectively. In the interface of two parts of test sections the flame of jet was formed and spread to the high-speed combustible gas. Two kinds of the ignitions, 3-D “line-flame ignition” and 2-D “plane-flame ignition”, were investigated. In the condition of 3-D “line-flame ignition” of combustion, thicker hot gas jet than pure air jet, was observed in schlieren photos. In the condition of 2-D “plane-flame ignition” of combustion, the delay time of ignition and the angle of flame front in schlieren photos were measured, from which the velocity of flame propagation in the high-speed combustible gas is estimated in the range of 30–90m/s and the delay time of ignition is estimated in the range of 0.12–0.29ms. PACS 47.40.Nm; 82.40.FpPart of this paper was presented at the 5th International Workshop on Shock/Vortex Interaction, Kaohsiung, October 27–31, 2003.  相似文献   

8.
To obtain practical schemes of vortex–flame interactions, a series of organized eddies formed in the plane premixed shear layer is investigated, instead of a single vortex ring or a single vortex tube. The plane premixed shear layer is first formed between two parallel uniform propane–air mixture streams. For getting clear qualitative pictures of vortex–flame interactions in the plane premixed shear layer, two extreme ignition points are assigned; one is assigned at the center of an organized eddy where the vortex motion plays an important role, the other at the midpoint between two adjacent organized eddies where the rolling-up motion prevails. A premixed flame is initiated by an electric discharge at one of the two assigned points and propagates either in the large scale organized eddy or along the interface between two uniform mixture streams. Propagation and deformation processes of the flame are observed using the simultaneously two-directional and high-speed Schlieren photography. The tangential velocity of organized eddy and the equivalence ratio of premixed shear flow are varied as two main parameters. The outline of propagating flame after the midpoint ignition is numerically analyzed by superposing the flame propagation having a constant burning velocity on the vortex flow field simulated with the discrete vortex method. The results obtained show that there exists another type of vortex–flame interaction in the plane shear layer in addition to the vortex bursting, and that it is caused by the rolling-up motion particular to the coherent structure in the plane shear layer and is simply named the vortex boosting. It is qualitatively concluded therefore that, in the ordinary turbulent premixed flames formed in the plane premixed shear layer, these two fundamental vortex-flame interactions get tangled with each other to augment the propagation velocity. An empirical expression which qualitatively takes into account of the effects of both vortex and chemical properties is finally proposed.  相似文献   

9.
A mathematical model of the supersonic combustion chamber of a hydrogen/air hypersonic ramjet is proposed. The model is developed on the basis of a “burn-out curve”, that is, the dependence of the combustion efficiency on the longitudinal coordinate and the design features of the chamber. The burn-out curve, which describes the mixing and burning of hydrogen and air, is assumed to be known from previous numerical and experimental studies of these processes under supersonic flow conditions. Other physical and chemical processes which take place in the combustion chamber, such as excitation of internal molecular degrees of freedom, hydrogen and oxygen dissociation, OH and NO formation, etc., are assumed to be equilibrium. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 146–154, January–February, 1997. The work was carried out with the support of the Russian Foundation for Fundamental Research (project No. 93-013-17514).  相似文献   

10.
Incompressible 3-D DNS is performed in non-decaying turbulence with single step chemistry to validate a new analytical expression for turbulent burning velocity. The proposed expression is given as a sum of laminar and turbulent contributions, the latter of which is given as a product of turbulent diffusivity in unburned gas and inverse scale of wrinkling at the leading edge. The bending behavior of U T at higher u′ was successfully reproduced by the proposed expression. It is due to decrease in the inverse scale of wrinkling at the leading edge, which is related with an asymmetric profile of FSD with increasing u′. Good agreement is achieved between the analytical expression and the turbulent burning velocities from DNS throughout the wrinkled, corrugated and thin reaction zone regimes. Results show consistent behavior with most experimental correlations in literature including those by Bradley et al. (Philos Trans R Soc Lond A 338:359–387, 1992), Peters (J Fluid Mech 384:107–132, 1999) and Lipatnikov et al. (Progr Energ Combust Sci 28:1–74, 2002).  相似文献   

11.
The effect of initial pressure on aluminum particles–air detonation was experimentally investigated in a 13 m long, 80 mm diameter tube for 100 nm and 2 μm spherical particles. While the 100 nm Al–air detonation propagates at 1 atm initial pressure in the tube, transition to the 2 μm aluminum–air detonation occurs only when the initial pressure is increased to 2.5 atm. The detonation wave manifests itself in a spinning wave structure. An increase in initial pressure increases the detonation sensitivity and reduces the detonation transition distance. Global analysis suggests that the tube diameter for single-head spinning detonation or characteristic detonation cell size would be proportional to (d 0: aluminum particle size, p 0: initial pressure). Its application to the experimental data results in m ~ O(1) and n ~ O(1) for 1 to 2 μm aluminum–air detonation, thus indicating a strong dependence on initial pressure and gas-phase kinetics for the aluminum reaction mechanism in detonation. Hence, combustion models based on the fuel droplet diffusion theory may not be adequate in describing micrometric aluminum–air detonation initiation, transition and propagation. For 2 μm aluminum–air mixtures at 2 atm initial pressure and below, experiments show a transition to a “dust quasi-detonation” that propagates quasi-steadily with a shock velocity deficit nearly 40% with respect to the theoretical C–J detonation value. The dust quasi- detonation wave can propagate in a tube with a diameter less than 0.4–0.5 times the diameter required for a spinning detonation wave.  相似文献   

12.
The effect of heat and mass transfer on the ignition, and in a second step on the nitrogen oxide (NO x ) generation, of single burning droplets is examined in a numerical study. Spherical symmetry with no gravity and no forced convection is presumed; ambient temperature is set at 500 K, below the auto-ignition point. The essentials of a forced droplet ignition by an external energy source are introduced. Two methods are applied: heat introduction at a fixed radial position r and heat introduction at a fixed local equivalence ratio ϕ r . This study’s distinctiveness compared to previous research is its focus on and its combination of partially pre-vaporized droplets and detailed chemistry, both being technically relevant in kerosene and diesel fuel combustion. The fuel of choice is n-decane (C10H22), and NO x production is studied exemplarily as a representative group of pollutant emissions. The conducted simulations show a decrease of NO x formation with an increase of the pre-vaporization rate \Uppsi. \Uppsi. This decrease is generally valid for both methods of heat introduction. However, results on flame stabilization and NO x production reveal a high sensitivity to parameters of the ignition model. The burning behavior during the initial stages is dominated by the ignition position. Extracting heat from the exhaust gas region of burning droplets shows no impact on the flame position nor on the relative NO x production. As a consequence, a well-founded modeling of the investigated droplet regime needs to resort to an iterative adaptation of the heat introduction parameters based on the findings of droplet burning and exhaust gas production.  相似文献   

13.
The effects of mixture fraction value ξ and the magnitude of its gradient |∇ξ| at the ignitor location on the localised forced ignition of turbulent mixing layers under decaying turbulence is studied based on three-dimensional compressible Direct Numerical Simulations (DNS) with simplified chemistry. The localised ignition is accounted for by a spatial Gaussian power distribution in the energy transport equation, which deposits energy over a prescribed period of time. In successful ignitions, it is observed that the flame shows a tribrachial structure. The reaction rate is found to be greater in the fuel rich side than in stoichiometric and fuel-lean mixtures. Placing the ignitor at a fuel-lean region may initiate ignition, but extinction may eventually occur if the diffusion of heat from the hot gas kernel overcomes the heat release due to combustion. It is demonstrated that ignition in the fuel lean region may fail for an energy input for which self-sustained combustion has been achieved in the cases of igniting at stoichiometric and fuel-rich locations. It is also found that the fuel reaction rate magnitude is negatively correlated with density-weighted scalar dissipation rate in the most reactive region. An increase in the initial mixture fraction gradient at the ignition centre for the ignitor placed at stoichiometric mixture decreases the spreading of the burned region along the stoichiometric mixture fraction isosurface. By contrast, the mass of the burned region increases with an increase in the initial mixture fraction gradient at the ignition location, as for a given ignition kernel size the thinner mixing layer includes more fuel-rich mixture, which eventually makes the overall burning rate greater than that compared to a thicker mixing layer where relatively a smaller amount of fuel-rich mixture is engulfed within the hot gas kernel. Submitted as a full-length article to Flow Turbulence and Combustion.  相似文献   

14.
An extension of the large eddy simulation (LES) technique to two-phase reacting flows, required to capture and predict the behavior of industrial burners, is presented. While most efforts reported in the literature to construct LES solvers for two-phase flow focus on Euler–Lagrange formulation, the present work explores a different solution (‘two-fluid’ approach) where an Eulerian formulation is used for the liquid phase and coupled with the LES solver of the gas phase. The equations used for each phase and the coupling terms are presented before describing validation in two simple cases which gather some of the specificities of real combustion chamber: (1) a one-dimensional laminar JP10/air flame and (2) a non-reacting swirled flow where solid particles disperse (Sommerfeld and Qiu, Int. J. Multiphase Flow 19(6):1093–1127, 1993). After these validations, the LES tool is applied to a realistic aircraft combustion chamber to study both a steady flame regime and an ignition sequence by a spark. Results bring new insights into the physics of these complex flames and demonstrate the capabilities of two-fluid LES.  相似文献   

15.
A distributed mathematical model is proposed to describe a flow of a mixture of gases, fine particles of a reacting metal, and droplets of a hydrocarbon fuel. The heterogeneous chemical reaction of low-temperature oxidation of the metal, the homogeneous oxidation reaction of the reacting vaporized liquid fuel, and the difference in phase velocities and temperatures are taken into account. It is shown that this model can be used to describe the problems of detonation in a mixture of a reacting gas and reacting solid particles, and the problems of ignition of a mixture of aluminum particles and tridecane droplets. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 2, pp. 128–136, March–April, 1999.  相似文献   

16.
The propagation mechanism of high speed turbulent deflagrations   总被引:2,自引:0,他引:2  
J. Chao  J.H.S. Lee 《Shock Waves》2003,12(4):277-289
The propagation regimes of combustion waves in a 30 cm by 30 cm square cross–sectioned tube with an obstacle array of staggered vertical cylindrical rods (with BR=0.41 and BR=0.19) are investigated. Mixtures of hydrogen, ethylene, propane, and methane with air at ambient conditions over a range of equivalence ratios are used. In contrast to the previous results obtained in circular cross–sectioned tubes, it is found that only the quasi–detonation regime and the slow turbulent deflagration regimes are observed for ethylene–air and for propane–air. The transition from the quasi–detonation regime to the slow turbulent deflagration regime occurs at (where D is the tube “diameter” and is the detonation cell size). When , the quasi–detonation velocities that are observed are similar to those in unobstructed smooth tubes. For hydrogen–air mixtures, it is found that there is a gradual transition from the quasi–detonation regime to the high speed turbulent deflagration regime. The high speed turbulent deflagration regime is also observed for methane–air mixtures near stoichiometric composition. This regime was previously interpreted as the “choking” regime in circular tubes with orifice plate obstacles. Presently, it is proposed that the propagation mechanism of these high speed turbulent deflagrations is similar to that of Chapman–Jouguet detonations and quasi-detonations. As well, it is observed that there exists unstable flame propagation at the lean limit where . The local velocity fluctuates significantly about an averaged velocity for hydrogen–air, ethylene–air, and propane–air mixtures. Unstable flame propagation is also observed for the entire range of high speed turbulent deflagrations in methane–air mixtures. It is proposed that these fluctuations are due to quenching of the combustion front due to turbulent mixing. Quenched pockets of unburned reactants are swept downstream, and the subsequent explosion serves to overdrive the combustion front. The present study indicates that the dependence on the propagation mechanisms on obstacle geometry can be exploited to elucidate the different complex mechanisms of supersonic combustion waves. Received 5 November 2001 / Accepted 12 June 2002 / Published online 4 November 2002 Correspondence to: J. Chao (e-mail: jenny.chao@mail.mcgill.ca) An abridged version of this paper was presented at the 18th Int. Colloquium on the Dynamics of Explosions and Reactive Systems at Seattle, USA, from July 29 to August 3, 2001.  相似文献   

17.
A model for calculating the flow of a turbulent mixture of air and suspended liquid particles injected into the near-wall region is developed within a unified approach of mechanics of heterogeneous media in the two-velocity and two-temperature approximation of the Eulerian approach. The influence of droplet evaporation in the near-wall jet on heat transfer between the two-phase gas-droplet flow and the wall is studied in the case of heat addition to the latter. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 1, pp. 5–17, January–February, 2006.  相似文献   

18.
The corona ignition voltage of an electrical discharge in air of atmospheric pressure depends on the presence of (moisture) particles, which may increase the corona losses. A relation between the corona ignition voltage and the particle size when tested shows unexpected results. With the corona ignition voltage in air as observed by Rose and Wood our calculations do not give particle sizes of 50 m (as used by Rose and Wood), but sizes of about 1 Å corresponding to the diameters of the molecules of the component gases in air. Our conclusion is that these molecules align in a conductive channel from the axial wires to the particle considered. In this way the charge transfer from the axial wire to the particles may be explained.  相似文献   

19.
We investigate the gas-particle dynamics of a device designed for biological pre-clinical experiments. The device uses transonic/supersonic gas flow to accelerate microparticles such that they penetrate the outer skin layers. By using a shock tube coupled to a correctly expanded nozzle, a quasi-one-dimensional, quasi-steady flow (QSF) is produced to uniformly accelerate the microparticles. The system utilises a microparticle “cassette” (a diaphragm sealed container) that incorporates a jet mixing mechanism to stir the particles prior to diaphragm rupture. Pressure measurements reveal that a QSF exit period – suitable for uniformly accelerating microparticles – exists between 155 and 220 mus after diaphragm rupture. Immediately preceding the QSF period, a starting process secondary shock was shown to form with its (x,t) trajectory comparing well to theoretical estimates. To characterise the microparticle, flow particle image velocimetry experiments were conducted at the nozzle exit, using particle payloads with varying diameter (2.7–48 μm), density (600–16,800 kg/m3) and mass (0.25–10 mg). The resultant microparticle velocities were temporally uniform. The experiments also show that the starting process does not significantly influence the microparticle nozzle exit velocities. The velocity distribution across the nozzle exit was also uniform for the majority of microparticle types tested. For payload masses typically used in pre-clinical drug and vaccine applications (≤ 1 mg), it was demonstrated that payload scaling does not affect the microparticle exit velocities. These characteristics show that the microparticle exit conditions are well controlled and are in agreement with ideal theory. These features combined with an attention to the practical requirements of a pre-clinical system make the device suitable for investigating microparticle penetration into the skin for drug delivery.  相似文献   

20.
The development of a new emulsified fuel is described, from the conceptual idea to the semi-industrial tests of the final product. The starting point was the necessity to lower the particulate matter (PM) emissions produced by the combustion of more than 200 MBD of heavy fuel oil (HFO) used for electric power conversion. The major component of HFO is a vacuum residue of the oil refining process mixed with light cycle oils to make it pumpable. An alternative to handle and burn the high viscosity residue (solid at room temperature) is by converting it in an oil-in-water emulsion. The best emulsions resulted of 70% residue in 30% water, Sauter Mean Diameter of 10–20 μm and a stability of more than 90 days. Spray burning tests of the emulsion against HFO in a semi-industrial 500 kW furnace showed a reduction in PM emissions of 24–36%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号