首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The modified simple equation method is an interesting technique to find new and more general exact solutions to the fractional differential equations in nonlinear sciences. In this paper, the method is applied to construct exact solutions of (2+1)-dimensional conformable time-fractional Zoomeron equation and the conformable space-time fractional EW equation.  相似文献   

2.
To model physical phenomena more accurately, fractional order differential equations have been widely used. Investigating exact solutions of the fractional differential equations have become more important because of the applications in applied mathematics, mathematical physics, and other areas. In this work, by means of the trial solution method and complete discrimination system, exact traveling wave solutions of the conformable time-fractional Zakharov–Kuznetsov equation and conformable time-fractional Zoomeron equation have been obtained and also solutions have been illustrated. Finding exact solutions of these equations that are encountered in plasma physics, nonlinear optics, fluid mechanics, and laser physics can help to understand nature of the complex phenomena.  相似文献   

3.
In this paper, a new approach, namely an ansatz method is applied to find exact solutions for nonlinear fractional differential equations in the sense of modified Riemann–Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to solve the fractional-order biological population model and the space–time fractional modified equal width equation, and as a result, some dark soliton solutions for them are established.  相似文献   

4.
In this article,we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations.We use the improved(G’/G)-expansion function method to calculate the exact solutions to the time-and space-fractional derivative foam drainage equation and the time-and space-fractional derivative nonlinear KdV equation.This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.  相似文献   

5.
In this study, the modified Kudryashov method is used to construct new exact solutions for some conformable fractional differential equations. By implementing the conformable fractional derivative and compatible fractional complex transforms, the fractional generalized reaction duffing (RD) model equation, the fractional biological population model and the fractional diffusion reaction (DR) equation with quadratic and cubic nonlinearity are discussed. As an outcome, some new exact solutions are formally established. All solutions have been verified back into its corresponding equation with the aid of maple package program. We assure that the employed method is simple and robust for the estimation of the new exact solutions, and practically capable for reducing the size of computational work for solving a various class of fractional differential equations arising in applied mathematics, mathematical physics and biology.  相似文献   

6.
In this research, we apply two different techniques on nonlinear complex fractional nonlinear Schrödinger equation which is a very important model in fractional quantum mechanics. Nonlinear Schrödinger equation is one of the basic models in fibre optics and many other branches of science. We use the conformable fractional derivative to transfer the nonlinear real integer-order nonlinear Schrödinger equation to nonlinear complex fractional nonlinear Schrödinger equation. We apply new auxiliary equation method and novel \(\left( {G'}/{G}\right) \)-expansion method on nonlinear complex fractional Schrödinger equation to obtain new optical forms of solitary travelling wave solutions. We find many new optical solitary travelling wave solutions for this model. These solutions are obtained precisely and efficiency of the method can be demonstrated.  相似文献   

7.
Motivated by the widely used ansätz method and starting from the modified Riemann-Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper.  相似文献   

8.
In this paper, the (G'/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.  相似文献   

9.
In this article, the Riccati sub equation method is employed to solve fractional Zakharov–Kuznetsov equation with dual-power law nonlinearity in the sense of the conformable derivative. By using this method, new exact solutions involving parameters, expressed by generalized hyperbolic functions are obtained. This method presents a wider applicability for handling nonlinear fractional wave equations.  相似文献   

10.
张广平 《大学物理》2012,31(2):16-18
无阻尼单摆运动微分方程是一种具有物理背景的非线性常微分方程,研究其精确解和解法是非线性科学中的一个重要内容.在F展开法的基础上,应用反正切分式变换正弦函数方法,并引入Riccati辅助方程,得到了4种无阻尼单摆方程精确解的结果.达到了丰富此类方程求解技巧和精确解的目的.总结得出此类方程应用反正切分式变换方法具有一定普适性的结论.  相似文献   

11.
Hang Xu  Jie Cang 《Physics letters. A》2008,372(8):1250-1255
The time fractional wave-like differential equation with a variable coefficient is studied analytically. By using a simple transformation, the governing equation is reduced to two fractional ordinary differential equations. Then the homotopy analysis method is employed to derive the solutions of these equations. The accurate series solutions are obtained. Especially, when ?f=?g=−1, these solutions are exactly the same as those results given by the Adomian decomposition method. The present work shows the validity and great potential of the homotopy analysis method for solving nonlinear fractional differential equations. The basic idea described in this Letter is expected to be further employed to solve other similar nonlinear problems in fractional calculus.  相似文献   

12.
13.
In this paper, the authors have established the \(\left( G^{\prime }/G\right)\)-expansion method to find exact solutions for conformable time fractional generalized seventh-order KdV equation (FGKdV7). This method is an effective method in finding exact traveling wave solutions of nonlinear evolution equations in mathematical physics. The effectiveness of this manageable method has been shown by applying it to several particular cases of the FGKdV7. The present approach has the potential to be applied to other nonlinear fractional differential equations. All of the numerical calculations in the present study have been performed on a PC applying some programs written in Mathematica.  相似文献   

14.
Under investigation in this work is a (\(2+1\))-dimensional the space–time fractional coupled nonlinear Schrödinger equations, which describes the amplitudes of circularly-polarized waves in a nonlinear optical fiber. With the aid of conformable fractional derivative and the fractional wave transformation, we derive the analytical soliton solutions in the form of rational soliton, periodic soliton, hyperbolic soliton solutions by four integration method, namely, the extended trial equation method, the \(\exp (-\,\Omega (\eta ))\)-expansion method and the improved \(\tan (\phi (\eta )/2)\)-expansion method and semi-inverse variational principle method. Based on the the extended trial equation method, we derive the several types of solutions including singular, kink-singular, bright, solitary wave, compacton and elliptic function solutions. Under certain condition, the 1-soliton, bright, singular solutions are driven by semi-inverse variational principle method. Based on the analytical methods, we find that the solutions give birth to the dark solitons, the bright solitons, combine dark-singular, kink, kink-singular solutions with fractional order for nonlinear fractional partial differential equations arise in nonlinear optics.  相似文献   

15.
In this paper, the nonlinear Boussinesq equations with the conformable time-fractional derivative are solved analytically using the well-established modified Kudryashov method. As a consequence, a number of new exact solutions for this type of equations are formally derived. It is believed that the method is one of the most effective techniques for extracting new exact solutions of nonlinear fractional differential equations.  相似文献   

16.
In this paper, we applied the sub-equation method to obtain a new exact solution set for the extended version of the time-fractional Kadomtsev-Petviashvili equation, namely BurgersKadomtsev-Petviashvili equation(Burgers-K-P) that arises in shallow water waves.Furthermore, using the residual power series method(RPSM), approximate solutions of the equation were obtained with the help of the Mathematica symbolic computation package. We also presented a few graphical illustrations for some surfaces. The fractional derivatives were considered in the conformable sense. All of the obtained solutions were replaced back in the governing equation to check and ensure the reliability of the method. The numerical outcomes confirmed that both methods are simple, robust and effective to achieve exact and approximate solutions of nonlinear fractional differential equations.  相似文献   

17.
In this paper, the first integral method and the functional variable method are used to establish exact traveling wave solutions of the space–time fractional Schrödinger–Hirota equation and the space–time fractional modified KDV–Zakharov–Kuznetsov equation in the sense of conformable fractional derivative. The results obtained confirm that proposed methods are efficient techniques for analytic treatment of a wide variety of the space–time fractional partial differential equations.  相似文献   

18.
In this paper, an efficient numerical method is considered for solving space-time fractional wave equation. The fractional derivatives are described in the conformable sense. The method is based on shifted Chebyshev polynomials of the second kind. Unknown function is written as Chebyshev series with the N term. The space-time fractional wave equation is reduced to a system of ordinary differential equations by using the properties of Chebyshev polynomials. The finite difference method is applied to solve this system of equations. Numerical results are provided to verify the accuracy and efficiency of the proposed approach.  相似文献   

19.
In this paper, new exact analytical solutions of time-fractional Phi-4 equation are developed using extended direct algebraic method by means of conformable fractional derivative. The obtained new results reveal that the proposed method is effective to studythe nonlinear dispersive equations in mathematical physics.  相似文献   

20.
H. Karayer  D. Demirhan  F. B&#  y&#  kk&#  l&#  &# 《理论物理通讯》2016,66(1):12-18
We introduce conformable fractional Nikiforov-Uvarov (NU) method by means of conformable fractional derivative which is the most natural definition in non-integer calculus. Since, NU method gives exact eigenstate solutions of Schrödinger equation (SE) for certain potentials in quantum mechanics, this method is carried into the domain of fractional calculus to obtain the solutions of fractional SE. In order to demonstrate the applicability of the conformable fractional NU method, we solve fractional SE for harmonic oscillator potential, Woods-Saxon potential, and Hulthen potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号