首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcontact printing is commonly used to create patterned films of molecules covalently bonded to substrates (e.g., thiols on gold). Here we describe microcontact printing of several types of noncovalently bonding molecules on mica. Due to the weaker interaction of the molecules with the substrate, environmental factors such as temperature and relative humidity play an important role. The vapor pressure of the inks also had a large impact on the fidelity of the stamped patterns. Fingering instabilities were observed for monolayers of octadecanol, docosanol, stearylamine, and stearic acid stamped at moderate relative humidity. The fidelity of the stamped pattern generally increased with the headgroup-surface interaction strength. These stamped monolayer films shed light on molecular transfer and two-dimensional spreading mechanisms.  相似文献   

2.
The feasibility of thermal ink jet printing as a robust process for biosurface engineering was demonstrated. The strategy investigated was to reconstruct a commercial printer and take advantage of its colour management interface. High printing resolution was achieved by formulating bio-inks of viscosity and surface tension similar to those of commercial inks. Protein and enzyme denaturation during thermal ink jet printing was shown to be insignificant. This is because the time spent by the biomolecules in the heating zone of the printer is negligible; in addition, the air and substrate of high heat capacity absorb any residual heat from the droplet.Gradients of trophic/tropic factors can serve as driving force for cell growth or migration for tissue regeneration. Concentration gradients of proteins were printed on scaffolds to show the capability of ink jet printing. The printed proteins did not desorb upon prolonged immersion in aqueous solutions, thus allowing printed scaffold to be used under in vitro and in vivo conditions. Our group portrait was ink jet printed with a protein on paper, illustrating that complex biopatterns can be printed on large area. Finally, patterns of enzymes were ink jet printed within the detection and reaction zones of a paper diagnostic.  相似文献   

3.
Various biomacromolecules including proteins and polysaccharides are printed on a substrate capped with a bovine serum albumin (BSA) precursor layer to create clear co-patterns of these molecules. Characterizations by confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) demonstrate the successful production and clear boundaries of the co-patterns. Rinsing the BSA-adsorbed substrate and the biomacromolecules-inked stamp before microcontact printing (microCP) is crucial for the creation of clear and stable co-patterns. The patterns are mainly stabilized by electrostatic interactions and van der Waals forces. Characterizations by ellipsometry, UV-Vis and fluorescence spectroscopy reveal that printing by a flat PDMS stamp yields a denser layered structure of proteins with a higher amount than that of adsorbed proteins. By printing, however, a lower enzymatic catalytic activity for horseradish peroxidase (HRP) or binding capability for avidin (both normalized to amount) is determined. A conformational transition from alpha-helix to beta-sheet of HRP is observed by ATR-IR. By contrast, a BSA precursor layer can effectively improve the functionality of the printed HRP or avidin and preserve the original conformation of the proteins, although the absolute transferred amount of these proteins is decreased.  相似文献   

4.
Microcontact printing (µCP) is an easy and efficient way of producing patterns of self‐assembled monolayers (SAM) containing different functional groups. We have developed a simple and convenient µCP‐based technique for the modification of a mica substrate with 3‐aminopropyltriethoxysilane (APTES) and the micropatterning of proteins (chicken IgG and rabbit IgG) on the modified mica surface. Our approach provides a quick and easy way to produce protein patterns on solid surfaces. The printed immunoglobulin patterns were detected by exposing the substrate to solutions containing fluorescently labeled complementary anti‐IgGs, and the formed immunoassays were studied using fluorescence microscopy. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Micro contact printing (microCP) has been established as a simple technique for high-resolution protein patterning for micro- and nanoarrays. However, as biochemical assays based on immobilized protein arrays progress from immunoassays to more delicate functional assays, the demand for methods of miniaturized, gentle, and oriented immobilization, which are applicable to many different target proteins, becomes larger. In this study, we present a novel microCP templated assembly approach, based on a recombinant SNAP-FLAG-HIS 10 (SFH) immobilization vehicle, which exploits the recently developed SNAP-tag protein. The SNAP-tag is derived from the human DNA repair protein hAGT, which covalently transfers the alkyl group of benzyl guanine (BG) substrates onto itself. We have designed a model SFH cassette carrying three tags (SNAP-tag, FLAG-tag, and HIS-tag), each of which can be used for fluorescence labeling or surface immobilization. When patterns of streptavidin modified with BG-biotin (streptavidin-BG) are stamped onto a surface, the SFH can subsequently assemble on the ligand pattern from solution, functioning as a general immobilization vehicle for high-resolution patterning of any protein expressed in the SFH cassette, in a gentle and oriented manner. Alternatively, the SFH can be site-selectively biotinylated using BG-biotin and, subsequently, assemble on stamped streptavidin. We exploit several ways to biotinylate the SFH protein via the SNAP-tag, promoting its templated assembly on micropatterns of streptavidin in four complementary formats. Quantitative analysis of the obtained patterns, revealed by immunostaining, indicates that all four approaches resulted in proper SFH immobilization and antibody recognition, demonstrating the versatility of the SFH cassette and the potential for high resolution patterning applications. Also, our data confirm that streptavidin can be stamped directly on surfaces, without loss of activity. While three strategies resulted in similar patterning efficiencies, one particular approach--namely templated assembly of SFH directly on streptavidin-BG patterns--resulted in an order of magnitude increase in patterning efficiency.  相似文献   

6.
Poly(dimethylsiloxane) (PDMS) stamps are widely used in soft lithographic methods. They are powerful tools for obtaining structures of soft material in the micrometer to nanometer range by printing techniques. In this contribution, a new application of h-PDMS stamps for nanobead deposition is introduced. Magnetite-polysaccharide particles of an average diameter of 150 nm are used. They can be biologically functionalized by attaching various molecular groups. Deposition of these particles on a carrier substrate results in well-reproducible structures. This is achieved by means of PDMS stamps with different patterns using a microfluidic approach on one hand and a printing approach on the other hand. Furthermore, magnetic substrates with particular domain structures have been used. The beads can then be arranged in rather complicated but well-defined geometrical structures along the domain walls. The magnetic interaction considerably increases the adhesion of the beads to the carrier substrate. All involved materials are biocompatible. Thus the setup can be used in cell culture experiments in order to investigate influences of different particle-bound proteins and particle patterns on cell growth and vitality.  相似文献   

7.
In this study a major lectin called Concanavalin A (ConA) has been micropatterned on a glass substrate by microcontact printing and the patterns have been characterized with fluorescent and atomic force microscope for their uniformity. Interaction of the patterns with mammalian cells has been investigated by culturing L929 mouse fibroblast cells on the ConA printed glass surface. Cell culture results obtained from the microcontact printed patterns have also been compared and benchmarked with another patterning technique named micromolding in capillaries (MIMIC). It has been revealed that in spite of molecular level heterogeneity and agglomeration of protein molecules in microcontact printed form, they can still interact with cell surface glycoproteins, impede the mobility of membrane receptor which results in altered morphology of the fibroblast cells.  相似文献   

8.
We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An aldehyde-terminated monolayer on glass or on gold was obtained by the reaction between an amino-terminated monolayer and terephthaldialdehyde. The aldehyde monolayer was employed as a substrate for the direct microcontact printing of bioengineered, collagen-like proteins by using an oxidized poly(dimethylsiloxane) (PDMS) stamp. After immobilization of the proteins into adhesive "islands", the remaining areas were blocked with amino-poly(ethylene glycol), which forms a layer that is resistant to cell adhesion. Human malignant carcinoma (HeLa) cells were seeded and incubated onto the patterned substrate. It was found that these cells adhere to and spread selectively on the protein islands, and avoid the poly(ethylene glycol) (PEG) zones. These findings illustrate the importance of microcontact printing as a method for positioning proteins at surfaces and demonstrate the scope of controlled surface chemistry to direct cell adhesion.  相似文献   

9.
To improve the sharpness and the color yield of polyester fabrics with water‐based pigment inkjet printing, surface modification was proceeded using β‐cyclodextrin and citric acid. Fabrics were modified in the solution of β‐cyclodextrin with the concentration 100g/L and citric acid 100g/L. The line width and image area of printed patterns, which could evaluate the printing performances, on the modified polyester fabric were decreased by 77% and 62% in comparison with that of the control, respectively. The color yield characterized by the K/S value was enhanced by 47%. Scanning electron microscope and atomic force microscope images confirmed that the capillary effect was decreased and the surface roughness was increased after the surface modification. The microscope images of the printed patterns clearly showed that the sharpness and the color yield were improved. Thereby, β‐cyclodextrin modification offered a potential way to polyester pretreatment for pigment inkjet printing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Poly(ethylene glycol) (PEG), a hydrophilic and repulsive polymer to non-specific adsorption, was stamped onto carboxylic acid-enriched polymer surfaces using the micro-contact printing technique. The patterns are stabilized via hydrogen bonds. Areas printed with PEG were then shown to be non-adsorbed with fluorescein isothiocyanate (FITC)-labeled dextran, while the poly(methacrylic acid) (PMAA) regions could via hydrogen bonding. Due to this contrast, well defined dextran patterns were obtained. Tuned with pH and temperature, the PEG molecules could be detached from the surfaces, erasing the template. Moreover, ionization of PMAA at higher pH induced an abrupt transition to an extended conformation, weakening the interactions between PMAA and dextran. Not only the dextran patterns lose their spatial selectivity, but also the overall adsorption amount is much lower. The pH sensitivity was in a quite narrow range, i.e. around pH 5. As the hydrogen bonds are also temperature sensitive, the attach points of PEG molecules on the surfaces disappeared at higher temperature. For poly(acrylic acid) (PAA) photografted surfaces, the pH sensitivity was more complicated due to the formation of the compact complexes of PEG and PAA molecules.  相似文献   

11.
We report on a novel lithography-free method for obtaining chemical submicron patterns of macromolecules on flat substrates. The approach is an advancement of the well-known microcontact printing scheme: While for classical microcontact printing lithographically produced masters are needed, we show that controlled wrinkling can serve as an alternative pathway to producing such masters. These can even show submicron periodicities. We expect upscaling to larger areas to be considerably simpler than that for existing techniques, as wrinkling results in a macroscopic deformation process that is not limited in terms of substrate size. Using this approach, we demonstrate successful printing of aqueous solutions of polyelectrolytes and proteins. We study the effectiveness of the stamping process and its limits in terms of periodicities and heights of the stamps' topographical features. We find that critical wavelengths are well below 355 nm and critical amplitudes are below 40 nm and clarify the failure mechanism in this regime. This will permit further optimization of the approach in the future.  相似文献   

12.
Microcontact printing (microCP) is an effective way to generate micrometer- or submicrometer-sized patterns on a variety of substrates. However, the fidelity of the final pattern depends critically on the coupled phenomena of stamp deformation, fluid transfer between surfaces, and the ability of the ink to self-assemble on the substrate. In particular, stamp deformation can produce undesirable effects that limit the practice and precision of microCP. Experimental observations and comparison with theoretical predictions are presented here for three of the most undesirable consequences of stamp deformation: (1) roof collapse of low aspect ratio recesses, (2) buckling of high aspect ratio plates, and (3) lateral sticking of high aspect ratio plates. Stamp behavior was observed visually with an inverted optical microscope while load-displacement data were collected during compression and retraction of stamps. Additionally, a "robotic stamper" was used to deliver ink patterns in precise locations on substrates. These monomolecular ink patterns were then observed in high contrast using the surface potential scanning mode of an atomic force microscope. Theoretical models based on continuum mechanics were used to accurately predict both physical deformation of the stamp and the resultant inking patterns. The close agreement between these models and the experimental data presented clearly demonstrates the essential considerations one must weigh when designing stamp geometry, material, and loading conditions for optimal pattern fidelity.  相似文献   

13.
Locally oxidized patterns on flat poly(dimethylsiloxane) stamps for microcontact printing were used as a platform for the transfer of a hydrophilic fluorescent ink to a glass substrate. The contrast was found to be limited. These locally oxidized patterns were conversely used as barriers for the transfer of hydrophobic n-octadecanethiol. In this case a good contrast was obtained, but the pattern was found to be susceptible to defects (cracks) in the barrier layer. Local stamp surface oxidation and subsequent modification with 1H,1H,2H,2H-perfluorodecyltrichlorosilane, for use as a barrier in the transfer of n-octadecanethiol, 16-mercaptohexadecanoic acid, and octanethiol, resulted in remarkably good contrast and stable patterns. The improved ink transfer control is ascribed to the reduction of undesired surface spreading and a superior mechanical stability of the stamp pattern. This new approach substantially expands the applicability of microcontact printing and provides a tool for the faithful reproduction of even extremely low filling ratio patterns.  相似文献   

14.
Chiral nematic mesoporous phenol‐formaldehyde resins, which were prepared using cellulose nanocrystals as a template, can be used as a substrate to produce latent photonic images. These resins undergo swelling, which changes their reflected color. By writing on the films with chemical inks, the density of methylol groups in the resin changes, subsequently affecting their degree of swelling and, consequently, their color. Writing on the films gives latent images that are revealed only upon swelling of the films. Using inkjet printing, it is possible to make higher resolution photonic patterns both as text and images that can be visualized by swelling and erased by drying. This novel approach to printing photonic patterns in resin films may be applied to anti‐counterfeit tags, signage, and decorative applications.  相似文献   

15.
We report a new patterning method, called light-stamping lithography (LSL), that uses UV-induced adhesion of poly(dimethylsiloxane) (PDMS). LSL is based on the direct transfer of the contact surface of the PDMS stamp to a substrate via a UV (254 nm)-induced surface bonding between the stamp and the substrate. This procedure can be adopted in automated printing machines that generate patterns with a wide range of feature sizes on diverse substrates. To demonstrate its usefulness, the LSL method was applied to prepare several PDMS patterns on a variety of substrates. The PDMS patterns were then used as templates for selective deposition of TiO2 thin film using atomic layer deposition as well as resists for selective wet etching.  相似文献   

16.
微接触印刷法控制硫化物晶体生长   总被引:3,自引:0,他引:3  
十八烷基三氯硅烷;三氯硅烷;阵列;微接触印刷法控制硫化物晶体生长  相似文献   

17.
Cells respond to and are directed by physiochemical cues in their microenvironment, including geometry and substrate stiffness. The development of substrates for cell culture with precisely controlled physiochemical characteristics has the potential to advance the understanding of cell biology considerably. In this communication, E-jet printing is introduced as a method for creating high-resolution protein patterns on substrates with controlled elasticity. It is the first application of E-jet printing on a soft surface. Protein spots as small as 5 μm in diameter on polyacrylamide are demonstrated. The patterned hydrogels are shown to support cell attachment and spreading. Polyacrylamide substrates patterned by E-jet printing may be applied to further the study of cellular mechanobiology.  相似文献   

18.
We describe a new method that allows photopolymerization of hydrogels to occur on surfaces functionalized with eosin. In this work, glass and silicon surfaces were derivatized with eosin and photopolymerization was carried out using visible light (514 nm). This mild condition may have advantages over methods that use ultraviolet (UV) light (e.g., for encapsulation of cells and proteins, in drug screening, or in biosensing applications). The hydrogel formed on the modified surface is remarkably stable for an extended period of time. The resultant hydrogel was hydrated for more than 18 months without suffering delamination from the substrate surface. This strongly suggests covalent attachment of the hydrogel to the surface. Contact angle titration measurements and X-ray photoelectron spectroscopy analysis of eosin surfaces before and after irradiation in the presence of triethanolamine suggest that the eosin radical is responsible for the covalent attachment of the gel onto the substrate surface. This method allows for 2-D patterning of hydrogels, which is demonstrated here using the microcontact printing technique. However, noncontact photolithography could be used to form similar patterns by directing light through a mask. This method can be easily implemented to form arrays of fluorophores and proteins in situ.  相似文献   

19.
Fluorescent photochromism has been applied as an attractive approach for the production of effective authentication substrates to show dual-mode secure encoding. In the current study, novel photochromic and fluorescent nanocomposite ink was developed to introduce a stamped film with strong dual-mode emission for anti-counterfeiting purposes. Inorganic/organic nanocomposite ink was developed from lanthanide-doped aluminate (LDA) dispersed in poly(acrylic acid)-based binder. To produce a transparent film, LDA must be dispersed well in the poly(acrylic acid)-based ink solution. The fluorescent and photochromic nanocomposite ink was stamped effectively onto cellulose documents followed with thermal fixation. Homogeneous fluorescent and photochromic layer was stamped onto paper surface providing a transparent look with the ability to switch to green beneath ultraviolet as illustrated by CIE Lab. The stamped documents were studied by photoluminescence spectra to show an absorption peak at 364 nm, and fluorescence band at 438 nm. The induced security encoding was transparent beneath visible light turning into visible greenish-yellow beneath ultraviolet light indicating a bathochromic shift. LDA was synthesized in the nanoparticle form and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The morphological properties of the stamped documents were examined by infrared spectroscopy (FTIR), scan electron microscope (SEM), EDS, and X-ray fluorescence (XRF). The stamped paper sheets displayed an efficiently reversible photochromism without fatigue under visible and ultraviolet lights. The rheologies of the prepared photoluminescent nanocomposite inks as well as the mechanical performance of the stamped sheets were investigated.  相似文献   

20.
In recent years, a large number of devices based on organic and biological materials have been developed. To scale-up the production of these systems to industrially acceptable standards, there is a need to develop soft-material stamping approaches with the needed resolution, complexity, and versatility. We have recently developed a DNA-based stamping method (supramolecular nano-stamping, SuNS) that has superior resolution and can print multiple molecules at the same time. A similar technique was independently developed by Crooks and co-workers. Here we show that SuNS can be used to efficiently print DNA features on a polymeric substrate (poly(methyl methacrylate), PMMA) with a 40 nm point resolution and a coverage that exceeds 100 mum2. The stamped PMMA substrate was also used as a master to print on a gold substrate. With PMMA being optically clear and electrically insulating, future applications of SuNS to print DNA micro- and nanoarrays are envisioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号