首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a multiscale computational model to couple molecular dynamics and peridynamics. The multiscale coupling model is based on a previously developed multiscale micromorphic molecular dynamics (MMMD) theory, which has three dynamics equations at three different scales, namely, microscale, mesoscale, and macroscale. In the proposed multiscale coupling approach, we divide the simulation domain into atomistic region and macroscale region. Molecular dynamics is used to simulate atom motions in atomistic region, and peridynamics is used to simulate macroscale material point motions in macroscale region, and both methods are nonlocal particle methods. A transition zone is introduced as a messenger to pass the information between the two regions or scales. We employ the “supercell” developed in the MMMD theory as the transition element, which is named as the adaptive multiscale element due to its ability of passing information from different scales, because the adaptive multiscale element can realize both top-down and bottom-up communications. We introduce the Cauchy–Born rule based stress evaluation into state-based peridynamics formulation to formulate atomistic-enriched constitutive relations. To mitigate the issue of wave reflection on the interface, a filter is constructed by switching on and off the MMMD dynamic equations at different scales. Benchmark tests of one-dimensional (1-D) and two-dimensional (2-D) wave propagations from atomistic region to macro region are presented. The mechanical wave can transit through the interface smoothly without spurious wave deflections, and the filtering process is proven to be efficient.  相似文献   

2.
Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper. The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discrete dislocations. Atomistic dislocations nucleate from the crack tip and move to the continuum layer where they glide according to the dislocation dynamics curve. An atoms/continuum averlapping belt is devised to facilitate the transition between the two scales. The continuum constraint on the atomic assembly is imposed through the mechanics atmosphere along the overlapping belt. Transmissions of mechanics parameters such as displacements, stresses, masses and momenta across the belt are realized. The present model allows us to explore interfacial fracture processes under different mode mixity. The effect of atomistic zigzag interface on the fracture process is revealed: it hinders dislocation emission from the crack tip, especially under high mode mixity. The project supported by the National Natural Science Foundation of China  相似文献   

3.
Fracture occurs on multiple interacting length scales; atoms separate on the atomic scale while plasticity develops on the microscale. A dynamic multiscale approach (CADD: coupled atomistics and discrete dislocations) is employed to investigate an edge-cracked specimen of single-crystal nickel, Ni, (brittle failure) and aluminum, Al, (ductile failure) subjected to mode-I loading. The dynamic model couples continuum finite elements to a fully atomistic region, with key advantages such as the ability to accommodate discrete dislocations in the continuum region and an algorithm for automatically detecting dislocations as they move from the atomistic region to the continuum region and then correctly “converting” the atomistic dislocations into discrete dislocations, or vice-versa. An ad hoc computational technique is also applied to dissipate localized waves formed during crack advance in the atomistic zone, whereby an embedded damping zone at the atomistic/continuum interface effectively eliminates the spurious reflection of high-frequency phonons, while allowing low-frequency phonons to pass into the continuum region.The simulations accurately capture the essential physics of the crack propagation in a Ni specimen at different temperatures, including the formation of nano-voids and the sudden acceleration of the crack tip to a velocity close to the material Rayleigh wave speed. The nanoscale brittle fracture happens through the crack growth in the form of nano-void nucleation, growth and coalescence ahead of the crack tip, and as such resembles fracture at the microscale. When the crack tip behaves in a ductile manner, the crack does not advance rapidly after the pre-opening process but is blunted by dislocation generation from its tip. The effect of temperature on crack speed is found to be perceptible in both ductile and brittle specimens.  相似文献   

4.
Molecular dynamics simulations using Modified Embedded Atom Method (MEAM) potentials were performed to analyze material length scale influences on damage progression of single crystal nickel. Damage evolution by void growth and coalescence was simulated at very high strain rates (108–1010/s) involving four specimen sizes ranging from ≈5000 to 170,000 atoms with the same initial void volume fraction. 3D rectangular specimens with uniform thickness were provided with one and two embedded cylindrical voids and were subjected to remote uniaxial tension at a constant strain rate. Void volume fraction evolution and the corresponding stress–strain responses were monitored as the voids grew under the increasing applied tractions.The results showed that the specimen length scale changes the dislocation pattern, the evolving void aspect ratio, and the stress–strain response. At small strain levels (0–20%), a damage evolution size scale effect can be observed from the damage-strain and stress–strain curves, which is consistent with dislocation nucleation argument of Horstemeyer et al. [Horstemeyer, M.F., Baskes, M.I., Plimpton, S.J., 2001a. Length scale and time scale effects on the plastic flow of FCC metals. Acta Mater. 49, pp. 4363–4374] playing a dominant role. However, when the void volume fraction evolution is plotted versus the applied true strain at large plastic strains (>20%), minimal size scale differences were observed, even with very different dislocation patterns occurring in the specimen. At this larger strain level, the size scale differences cease to be relevant, because the effects of dislocation nucleation were overcome by dislocation interaction.This study provides fodder for bridging material length scales from the nanoscale to the larger scales by examining plasticity and damage quantities from a continuum perspective that were generated from atomistic results.  相似文献   

5.
We develop a nodal dislocation dynamics (DD) model to simulate plastic processes in fcc crystals. The model explicitly accounts for all slip systems and Burgers vectors observed in fcc systems, including stacking faults and partial dislocations. We derive simple conservation rules that describe all partial dislocation interactions rigorously and allow us to model and quantify cross-slip processes, the structure and strength of dislocation junctions, and the formation of fcc-specific structures such as stacking fault tetrahedra. The DD framework is built upon isotropic non-singular linear elasticity and supports itself on information transmitted from the atomistic scale. In this fashion, connection between the meso and micro scales is attained self-consistently, with all material parameters fitted to atomistic data. We perform a series of targeted simulations to demonstrate the capabilities of the model, including dislocation reactions and dissociations and dislocation junction strength. Additionally we map the four-dimensional stress space relevant for cross-slip and relate our findings to the plastic behavior of monocrystalline fcc metals.  相似文献   

6.
Classical fracture mechanics is based on the premise that small scale features could be averaged to give a larger scale property such that the assumption of material homogeneity would hold. Involvement of the material microstructure, however, necessitates different characteristic lengths for describing different geometric features. Macroscopic parameters could not be freely exchanged with those at the microscopic scale level. Such a practice could cause misinterpretation of test data. Ambiguities arising from the lack of a more precise range of limitations for the definitions of physical parameters are discussed in connection with material length scales. Physical events overlooked between the macroscopic and microscopic scale could be the link that is needed to bridge the gap. The classical models for the creation of free surface for a liquid and solid are oversimplified. They consider only the translational motion of individual atoms. Movements of groups or clusters of molecules deserve attention. Multiscale cracking behavior also requires the distinction of material damage involving at least two different scales in a single simulation. In this connection, special attention should be given to the use of asymptotic solution in contrast to the full field solution when applying fracture criteria. The former may leave out detail features that would have otherwise been included by the latter. Illustrations are provided for predicting the crack initiation sites of piezoceramics. No definite conclusions can be drawn from the atomistic simulation models such as those used in molecular dynamics until the non-equilibrium boundary conditions can be better understood. The specification of strain rates and temperatures should be synchronized as the specimen size is reduced to microns. Many of the results obtained at the atomic scale should be first identified with those at the mesoscale before they are assumed to be connected with macroscopic observations. Hopefully, “mesofracture mechanics” could serve as the link to bring macrofracture mechanics closer to microfracture mechanics.  相似文献   

7.
The full resolution of flows involving particles whose scale is hundreds or thousands of times smaller than the size of the flow domain is a challenging problem. A naive approach would require a tremendous number of degrees of freedom in order to bridge the gap between the two spatial scales involved. The approach used in the present study employs two grids whose grid size fits the two different scales involved, one of them (the micro‐scale grid) being embedded into the other (the macro‐scale grid). Then resolving first the larger scale on the macro‐scale grid, we transfer the so obtained data to the boundary of the micro‐scale grid and solve the smaller size problem. Since the particle is moving throughout the macro‐scale domain, the micro‐scale grid is fixed at the centroid of the moving particle and therefore moves with it. In this study we combine such an approach with a fictitious domain formulation of the problem resulting in a very efficient algorithm that is also easy to implement in an existing CFD code. We validate the method against existing experimental data for a sedimenting sphere, as well as analytical results for motion of an inertia‐less ellipsoid in a shear flow. Finally, we apply the method to the flow of a high aspect ratio ellipsoid in a model of a human lung airway bifurcation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Current research on nanocrystalline metals and nanoscale multilayer thin films suggests extraordinary plastic strength is due to confinement of slip to individual grains or layers. To assess the magnitude of confinement, a Peierls model of slip transmission of a screw dislocation across a coherent, non-slipping interface is presented. The results reflect that large interfacial barriers to transmission are generated by rapid fluctuations in dislocation line energy near the interface due to elastic modulus mismatch, stacking fault energy mismatch, and antiphase boundary energy for transmission into an ordered phase. Coherency stress is predicted to dramatically alter the dislocation core configuration and impart additional strength regardless of the sign. Contributions to strength are not additive due to nonlinear coupling via the dislocation core configuration. The predicted barrier strength for a coherent (0 0 1) Cu/Ni interface is comparable to atomistic (EAM) results but larger than estimates from hardness data.  相似文献   

9.
One of the low-temperature failure mechanisms in ductile metallic alloys is the growth of voids and their coalescence. In the present work we attempt to obtain atomistic insights into the mechanisms underpinning cavitation in a representative metal, namely Aluminum. Often the pre-existing voids in metallic alloys such as Al have complex shapes (e.g. corrosion pits) and the defromation/damage mechanisms exhibit a rich size-dependent behavior across various material length scales. We focus on these two issues in this paper through large-scale calculations on specimens of sizes ranging from 18 thousand to 1.08 million atoms. In addition to the elucidation of the dislocation propagation based void growth mechanism we highlight the observed length scale effect reflected in the effective stress-strain response, stress triaxiality and void fraction evolution. Furthermore, as expected, the conventionally used Gurson's model fails to capture the observed size-effects calling for a mechanistic modification that incorporates the mechanisms observed in our (and other researchers') simulation. Finally, in our multi-void simulations, we find that, the splitting of a big void into a distribution of small ones increases the load-carrying capacity of specimens. However, no obvious dependence of the void fraction evolution on void coalescence is observed.  相似文献   

10.
This paper describes methods and approaches that have been used to simulate and model the transport, mixing and agglomeration of small particles in a flowing turbulent gas. The transported particles because of their inertia are assumed not to follow the motion of the large scales of the turbulence and or the motion of the small dissipating scales of the turbulence. We show how both these behaviours can be represented by a PDF approach analogous to that used in classical kinetic theory. For large scale dispersion the focus is on transport in simple generic flows like statistically stationary homogeneous and isotropic turbulence and simple shear flows. Special consideration is given to the transport and deposition of particles in turbulent boundary layers. For small scale transport the focus is on how the small scales of turbulence together with the particle inertial response enhance collision processes like particle agglomeration. In this case the importance of segregation and the formation of caustics, singularities and random uncorrelated motion is highlighted and discussed.  相似文献   

11.
We present an atomistic–continuum hybrid method to investigate spreading dynamics of drops on solid surfaces. The Navier–Stokes equations are solved by the finite-volume method in a continuum domain comprised of the main body of the drop, and atomistic molecular dynamics simulations are used in a particle domain in the vicinity of the contact line. The spatial coupling between the continuum and particle domains is achieved through constrained dynamics of flux continuities in an overlap domain.  相似文献   

12.
In this paper, molecular dynamics (MD) calculations have been used to examine the physics behind continuum models of misfit dislocation formation and to assess the limitations and consequences of approximations made within these models. Without compromising the physics of misfit dislocations below a surface, our MD calculations consider arrays of dislocation dipoles constituting a mirror imaged “surface”. This allows use of periodic boundary conditions to create a direct correspondence between atomistic and continuum representations of dislocations, which would be difficult to achieve with free surfaces. Additionally, by using long-time averages of system properties, we have essentially reduced the errors of atomistic simulations of large systems to “zero”. This enables us to deterministically compare atomistic and continuum calculations. Our work results in a robust approach that uses atomistic simulation to accurately calculate dislocation core radius and energy without the continuum boundary conditions typically assumed in the past, and the novel insight that continuum misfit dislocation models can be inaccurate when incorrect definitions of dislocation spacing and Burgers vector in lattice-mismatched systems are used. We show that when these insights are properly incorporated into the continuum model, the resulting energy density expression of the lattice-mismatched systems is essentially indistinguishable from the MD results.  相似文献   

13.
We perform atomistic simulations of dislocation nucleation in defect free crystals in 2 and 3 dimensions during indentation with circular (2D) or spherical (3D) indenters. The kinematic structure of the theory of Field Dislocation Mechanics (FDM) is shown to allow the identification of a local feature of the atomistic velocity field in these simulations as indicative of dislocation nucleation. It predicts the precise location of the incipient spatially distributed dislocation field, as shown for the cases of the Embedded Atom Method potential for Al and the Lennard–Jones pair potential. We demonstrate the accuracy of this analysis for two crystallographic orientations in 2D and one in 3D. Apart from the accuracy in predicting the location of dislocation nucleation, the FDM based analysis also demonstrates superior performance than existing nucleation criteria in not persisting in time beyond the nucleation event, as well as differentiating between phase boundary/shear band and dislocation nucleation. Our analysis is meant to facilitate the modeling of dislocation nucleation in coarser-than-atomistic scale models of the mechanics of materials.  相似文献   

14.
In many problems of interest to materials scientists and engineers, the evolution of crystalline extended defects (dislocations, cracks, grain boundaries, interfaces, voids, precipitates) is controlled by the flow of point defects (interstitial/substitutional atoms and/or vacancies) through the crystal into the extended defect. Precise modeling of this behavior requires fully atomistic methods in and around the extended defect, but the flow of point defects entering the defect region can be treated by coarse-grained methods. Here, a multiscale algorithm is presented to provide this coupling. Specifically, direct accelerated molecular dynamics (AMD) of extended defect evolution is coupled to a diffusing point defect concentration field that captures the long spatial and temporal scales of point defect motion in the presence of the internal stress fields generated by the evolving defect. The algorithm is applied to study vacancy absorption into an edge dislocation in aluminum where vacancy accumulation in the core leads to nucleation of a double-jog that then operates as a sink for additional vacancies; this corresponds to the initial stages of dislocation climb modeled with explicit atomistic resolution. The method is general and so can be applied to many other problems associated with nucleation, growth, and reaction due to accumulation of point defects in crystalline materials.  相似文献   

15.
A dynamic multiscale simulation method has been used to study the nanoscale material removal processes for single crystals. The model simultaneously captures the atomistic mechanisms during material removal from the free surface and the long-range mobility of dislocations and their interactions without the computational cost of full atomistic simulations. The method also permits the simulation of system sizes that are approaching experimentally accessibly systems, albeit in 2D. Simulations are performed on single crystal aluminum to study the atomistic details of material removal, chip formation, surface evolution, and generation and propagation of dislocations for a wide range of tool speeds (20-800 m/s) at room temperature. The results from these simulations demonstrate the power of the developed method in capturing both long-range dislocation plasticity and short-range atomistic phenomena during tool advance. In addition, we have investigated the effect of the scratching depth during the material removal process. Fluctuations of scratching tangential force are related to dislocation generation events during the material removal process. A transition from dislocation generation and glides at lower tool speeds to localized amorphization at high tool speeds is found to give rise to an optimal tool speed for low cutting forces.  相似文献   

16.
基于针对分子动力学-Cauchy连续体模型提出的连接尺度方法(BSM)[1,2],发展了耦合细尺度上基于离散颗粒集合体模型的离散单元法(DEM)和粗尺度上基于Cosserat连续体模型的有限元法(FEM)的BSM。仅在有限局部区域内采用DEM以从细观层次模拟非连续破坏现象,而在全域则采用花费计算时间和存储空间较少的FEM。通过连接尺度位移(包括平移和转动)分解,和基于作用于Cosserat连续体有限元节点和颗粒集合体颗粒形心的离散系统虚功原理,得到了具有解耦特征的粗细尺度耦合系统运动方程。讨论和提出了在准静态载荷条件下粗细尺度域的界面条件,以及动态载荷条件下可以有效消除粗细尺度域界面上虚假反射波的非反射界面条件(NRBC)。本文二维数值算例结果说明了所提出的颗粒材料BSM的可应用性和优越性,及所实施界面条件对模拟颗粒材料动力学响应的有效性。  相似文献   

17.
This paper presents a new methodology for coarse-grained atomistic simulation of dislocation dynamics. The methodology combines an atomistic formulation of balance equations and a modified finite element method employing rhombohedral-shaped 3D solid elements suitable for fcc crystals. With significantly less degrees of freedom than that of a fully atomistic model and without additional constitutive rules to govern dislocation activities, this new coarse-graining (CG) method is shown to be able to reproduce key phenomena of dislocation dynamics for fcc crystals, including dislocation nucleation and migration, formation of stacking faults and Lomer-Cottrell locks, and splitting of stacking faults, all comparable with fully resolved molecular dynamics simulations. Using a uniform coarse mesh, the CG method is then applied to simulate an initially dislocation-free submicron-sized thin Cu sheet. The results show that the CG simulation has captured the nucleation and migration of large number of dislocations, formation of multiple stacking fault ribbons, and the occurrence of complex dislocation phenomena such as dislocation annihilation, cutting, and passing through the stacking faults. The distinctions of this method from existing coarse-graining or multiscale methods and its potential applications and limitations are also discussed.  相似文献   

18.
19.
The phenomenon of interfacial fracture, as manifested by atomistic cleavage, debonding and dislocation emission provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomistic-continuum simulation[1] of interfacial fracture, we focus here on the atomistic behavior within a nanoscopic core surrounding the crack tip. The inter-atomic potential under Embedded Atom Method is recapitulated to form an essential framework of atomistic simulation. The calculations are performed for a side-cracked disc configuration under a remoteK field loading. It is revealed that a critical loading rate defines the brittle-to-ductile transition of homogeneous materials. We further observe that the near tip mode mixity dictates the nanoscopic profile near an interfacial crack tip. A zigzag interface structure is simulated which plays a significant role in the dislocation emission from an interfacial crack tip, as will be explored in the second part of this investigation. The project supported by the National Natural Science Foundation of China  相似文献   

20.
Burst event detection in wall turbulence by WVITA method   总被引:2,自引:0,他引:2  
Wavelet Variable Interval Time Average (WVITA) is introduced as a method incorporating burst event detection in wall turbulence. Wavelet transform is performed to unfold the longitudinal fluctuating velocity time series measured in the near wall region of a turbulent boundary layer using hot-film anemometer. This unfolding is both in time and in space simultaneously. The splitted kinetic of the longitudinal fluctuating velocity time series among different scales is obtained by integrating the square of wavelet coefficient modulus over temporal space. The time scale that related to burst events in wall turbulence passing through the fixed probe is ascertained by maximum criterion of the kinetic energy evolution across scales. Wavelet transformed localized variance of the fluctuating velocity time series at the maximum kinetic scale is put forward instead of localized short time average variance in Variable Interval Time Average (VITA) scheme. The burst event detection result shows that WVITA scheme can avoid erroneous judgement and solve the grouping problem more effectively which is caused by VITA scheme itself and can not be avoided by adjusting the threshold level or changing the short time average interval. The project supported by the National Natural Science Foundation of China (19732005) and the National Climbing Project of China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号