首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Shear localization induced brittleness is the main drawback of metallic glasses which restricts their practical applications. Previous experiments have provided insights on how to suppress shear localization by reducing the sample size of metallic glasses to the order of 100 nm. In order to reveal the size effects and associated deformation mechanisms of metallic glasses in an even finer scale, we perform large-scale atomistic simulations for the uniaxial compression and tension of metallic glass nanowires. The simulation results show that, as the diameter of metallic glass samples decreases from 45 nm to 8 nm, the tensile yield strength increases while the compressive yield strength decreases. Homogeneous flow is observed as the governing deformation mechanism in all simulated metallic glass samples, where plastic shearing tends to initiate on the sample surface and propagate into the interior. To rationalize the size dependence of yield strengths, we propose a theoretical model based on the concept of surface stress and Mohr–Coulomb criterion. The theoretical predictions agree well with the simulation results, implying the important role of surface stress on the yielding of MGs below 100 nm. Finally, a discussion about the size effects of strength in metallic glasses at different length scales is provided. Our results suggest that the shear band energy and surface stress might be the two crucial parameters in determining the critical size required for the transition from shear localization to homogeneous deformation in MGs.  相似文献   

2.
Bulk metallic glass with composition Ti40Zr25Ni8Cu9Be18 exhibits considerably high compressive yield stress, significant plasticity (with a concomitant vein-like fracture morphology) and relatively low density. Yielding and intrinsic plasticity of this alloy are discussed in terms of its thermal and elastic properties. An influence of normal stresses acting on the shear plane is evidenced by: (i) the fracture angle (<45°) and (ii) finite-element simulations of nanoindentation curves, which require the use of a specific yield criterion, sensitive to local normal stresses acting on the shear plane, to properly match the experimental data. The ratio between hardness and compressive yield strength (constraint factor) is analyzed in terms of several models and is best adjusted using a modified expanding cavity model incorporating a pressure-sensitivity index defined by the Drucker–Prager yield criterion. Furthermore, comparative results from compression tests and nanoindentation reveal that deformation also causes strain softening, a phenomenon which is accompanied with the occurrence of serrated plastic flow and results in a so-called indentation size effect (ISE). A new approach to model the ISE of this metallic glass using the free volume concept is presented.  相似文献   

3.
李继承  陈小伟 《力学进展》2011,41(5):480-518
块体金属玻璃及其复合材料以其优异的力学、物理和化学性能, 正成为国内外科技和工程领域的研究热点. 特别是金属玻璃复合材料具有高剪切敏感性和剪切``自锐'特性, 使其有可能成为新型穿甲弹芯材料, 因而具有重要的军事意义. 本文综述了针对块体金属玻璃及其复合材料的压缩剪切变形和断裂特性及高速冲击、侵彻/穿甲过程中剪切``自锐'行为等方面的研究进展, 包括相关实验研究、理论分析及有限元模拟等, 最后给出未来相关工作的一些建议.   相似文献   

4.
金属非晶发展至今已有多种体系并可实现厘米量级的块体制备,其各种性能也都有了广泛的研究。本文主要介绍金属非晶的单轴拉伸、单轴压缩、微柱压缩、薄板弯曲、拉伸-扭转等物理力学特性及关于其变形的理论分析。文章涵盖了金属非晶的以下一些力学特性:金属非晶的弹性模量和其溶剂金属的相近性―金属非晶通常具有2% 左右的弹性应变极限,对应着GPa量级的高失效强度;金属非晶单轴拉伸、压缩时的宏观塑性特征及塑性变形的典型机制;金属非晶微观上的短程与中程原子团簇结构特点及其与非晶塑性的关联;金属非晶塑性屈服与静水压力的相关性,拉扭组合时呈现的螺旋断口特征,以及Mohr-Coulomb本构模型对这些屈服特征的适用性。最后,作者也介绍了金属非晶塑性变形的微观物理模型及连续介质力学本构,以及金属非晶的断裂与疲劳特性。  相似文献   

5.
Some recent experiments on sub-micron and nano-sized metallic glass (amorphous alloy) specimens have shown that the shear localization process becomes more stable and less catastrophic when compared to the response exhibited by large sample sizes. This leads to the discovery that the shear localization process and fracture can be delayed by decreasing sample volume. In this work we develop a non-local and finite-deformation-based constitutive model using thermodynamic principles and the theory of micro-force balance to study the causes for the aforementioned observations. The constitutive model has also been implemented into a commercially available finite-element program by writing a user-material subroutine. With the aid of finite-element simulations, our constitutive model predicts that metallic glass samples have the intrinsic ability to exhibit: (a) the delaying of (catastrophic) shear localization with decreasing sample size, and (b) homogeneous deformation behavior for sample volumes smaller than the shear band nucleus.The cause for the observations listed above is the increasing influence of a non-local interaction stress with decreasing sample volume. This interaction stress has energetic origins and it affects plastic deformation due to the strong coupling between plastic shearing and free-volume generation. Akin to strain-gradient plasticity theory, the role of the interaction stress is to strengthen the material at locations where the defect density/free volume is higher compared to the rest of metallic glass sample.  相似文献   

6.
The torsional buckling of a plastically deforming cruciform column under compressive load is investigated. The problem is solved analytically based on the von Kármán shallow shell theory and the virtual work principle. Solutions found in the literature are extended for path-dependent incremental behaviour as typically found in the presence of the vertex effect that is present in metallic polycrystals.At the critical load for buckling the direction of straining changes by an additional shear component. It is shown that the incremental elastic–plastic moduli are spatially nonuniform for such situations, contrary to the classical J2 flow and deformation theories. The critical shear modulus that governs the buckling equation is obtained as a weighted average of the incremental elastic–plastic moduli over the cross-section of the cruciform.Using a plasticity model proposed by the authors, that includes the vertex effect, the buckling-critical load is computed for a aluminium column both with the analytical model and a FEM-based eigenvalue buckling analysis. The stable post-buckling path is determined by the energy criterion of path-stability. A comparison with the experimentally obtained classical results by Gerard and Becker (1957) shows good agreement without relying on artificial imperfections as necessary in the classical J2 flow theory.  相似文献   

7.
Shear band formation and fracture are characterized during mode II loading of a Zr-based bulk metallic glass. The measured mode II fracture toughness, KIIc=75±4 MPa√m, exceeds the reported mode I fracture toughness by ∼4 times, suggesting that normal or mean stresses play a significant role in the deformation process at the crack tip. This effect is explained in light of a mean stress modified free volume model for shear localization in metallic glasses. Thermal imaging of deformation at the mode II crack tip further reveals that shear bands initiate, arrest, and reactivate along the same path, indicating that flow in the shear band leads to permanent changes in the glass structure that retain a memory of the shear band path. The measured temperature increase within the shear band is a fraction of a degree. However, heat dissipation models indicate that the temperature could have exceeded the glass transition temperature for less than 1 ms immediately after the shear band formed. It is shown that this time scale is sufficient for mechanical relaxation slightly above the glass transition temperature.  相似文献   

8.
Zhang  Jin 《Meccanica》2019,54(14):2281-2293

Understanding of the elastic deformation behaviours of recently synthesised carbon nanorings (CNRs) is crucial in guiding their future applications, because the strain engineering provides an efficient means to modify their physical and chemical properties. In this paper, by using molecular dynamics simulations and nonlocal continuum mechanics models, we study the elastic deformations of CNRs with three different molecular structures, i.e., cycloparaphenylenes (CPPs), [4]cyclochrysenylenes and cyclacenes. Our results show that, compared to other two types of CNRs, CPPs have the smallest mechanical stiffness, which is attributed to the influence of numerous weak connecting carbon–carbon bonds existing between their component benzene rings. In addition to the molecular structure, the elastic deformation behaviours of CNRs are also found to strongly depend on the size. Specifically, the compressive stiffness of CNRs is found to increase as their size (radius) decreases. Meanwhile, the size reduction of CNRs can trigger the anisotropy of their compressive stiffness and can also aggravate the influence of small-scale effects on their elastic deformation behaviours, which can significantly reduce the compressive stiffness.

  相似文献   

9.
Fan  S.  Jiang  C.  Lu  H.  Li  F.  Yang  Y.  Shen  Y.  Lu  Y. 《Experimental Mechanics》2019,59(3):361-368

Small-scale metallic glasses have many applications in microelectromechanical systems (MEMS) and sensors which require good mechanical properties. Bending, tensile and compression properties of metallic glasses at micro/nano-scale have been well investigated previously. In this work, by developing a micro robotic system, we investigated the torsional behavior of Fe-Co based metallic glass microwires inside a scanning electron microscope (SEM). Benefiting from the in situ SEM imaging capability, the fracture behavior of metallic glass microwire has been uncovered clearly. Through the postmortem fractographic analysis, it can be revealed that both spiral stripes and shear bands contributed to the fracture mechanism of the microscale metallic glass. Plastic deformation of the microwires include both homogenous and inhomogeneous plastic strain, which began with the liquid-like region, then a crack formed because of shear bands and propagated along the spiral direction. Although the metallic glass microwire broke in brittle mode, the shear strain was not lower than that of conventional metal wires. Moreover, we found an inverse relationship between the plastic strain and the loading rate.

  相似文献   

10.
试验机弹性储能对岩石力学性能测试的影响   总被引:5,自引:0,他引:5  
在材料试验机上进行岩石力学性能测试时,如何准确测量岩石的变形是整个测试分析的基础.为了具体考察试验机刚度对岩石变形测量的影响程度,在两台不同的试验机上进行了岩石的单轴压缩试验,通过对加卸载过程中试验系统及岩石能量变化的分析,详细研究了试验系统弹性储能对岩石变形测量的影响,进而给出了基于试验机刚度的修正计算方法,来确定岩石在测试过程中的变形.  相似文献   

11.
The modeling of high velocity impact into brittle or quasibrittle solids is hampered by the unavailability of a constitutive model capturing the effects of material comminution into very fine particles. The present objective is to develop such a model, usable in finite element programs. The comminution at very high strain rates can dissipate a large portion of the kinetic energy of an impacting missile. The spatial derivative of the energy dissipated by comminution gives a force resisting the penetration, which is superposed on the nodal forces obtained from the static constitutive model in a finite element program. The present theory is inspired partly by Grady's model for expansive comminution due to explosion inside a hollow sphere, and partly by analogy with turbulence. In high velocity turbulent flow, the energy dissipation rate gets enhanced by the formation of micro-vortices (eddies) which dissipate energy by viscous shear stress. Similarly, here it is assumed that the energy dissipation at fast deformation of a confined solid gets enhanced by the release of kinetic energy of the motion associated with a high-rate shear strain of forming particles. For simplicity, the shape of these particles in the plane of maximum shear rate is considered to be regular hexagons. The particle sizes are assumed to be distributed according to the Schuhmann power law. The condition that the rate of release of the local kinetic energy must be equal to the interface fracture energy yields a relation between the particle size, the shear strain rate, the fracture energy and the mass density. As one experimental justification, the present theory agrees with Grady's empirical observation that, in impact events, the average particle size is proportional to the (−2/3) power of the shear strain rate. The main characteristic of the comminution process is a dimensionless number Ba (Eq. (37)) representing the ratio of the local kinetic energy of shear strain rate to the maximum possible strain energy that can be stored in the same volume of material. It is shown that the kinetic energy release is proportional to the (2/3)-power of the shear strain rate, and that the dynamic comminution creates an apparent material viscosity inversely proportional to the (1/3)-power of that rate. After comminution, the interface fracture energy takes the role of interface friction, and it is pointed out that if the friction depends on the slip rate the aforementioned exponents would change. The effect of dynamic comminution can simply be taken into account by introducing the apparent viscosity into the material constitutive model, which is what is implemented in the paper that follows.  相似文献   

12.
加载速率对岩石的力学性质以及变形破坏方式具有重要的影响。基于MTS810电液伺服材料试验系统与PCI-2声发射仪对岩样进行不同加载速率作用下的单轴压缩和声发射试验。研究结果表明:(1)在各级加载速率作用下,岩样单轴压缩应力-应变曲线大致经历了压密、弹性、屈服、破坏四个阶段。岩样峰后曲线在加载速率为0.001~0.01 mm/s时出现台阶型分段跌落状,在加载速率为0.01~0.1 mm/s时呈现光滑、陡峭的连续曲线。(2)岩样峰值强度、弹性模量随加载速率的增加而增大,与加载速率对数均呈现三次多项式拟合关系。峰值应变随加载速率的增加而减小,与加载速率对数呈现线性拟合关系。(3)随着加载速率由0.001mm/s增加至0.1mm/s,岩样吸收的总应变能 具有波动性,可释放的弹性应变能 增幅60.42%,耗散应变能 降幅 66.38%, 增幅43.33%, 降幅66.67%,岩样破裂模式由拉剪破坏逐渐向张拉劈裂破坏过渡,岩样破裂块数增多。(4)加载速率为0.001~0.1 mm/s时,岩样破坏方式有所不同,但破坏为同一类损伤过程。单轴压缩状态下,能量耗散使得岩样损伤致使强度丧失,而能量释放使得岩样宏观破裂面贯通,并向着能量释放的方向张裂或弹射破坏。  相似文献   

13.
A mechanism-based constitutive model is presented for the inelastic deformation and fracture of ceramics. The model comprises four essential features: (i) micro-crack extension rates based on stress-intensity calculations and a crack growth law, (ii) the effect of the crack density on the stiffness, inclusive of crack closure, (iii) plasticity at high confining pressures, and (iv) initial flaws that scale with the grain size. Predictions of stress/strain responses for a range of stress states demonstrate that the model captures the transition from deformation by micro-cracking at low triaxiality to plastic slip at high triaxialities. Moreover, natural outcomes of the model include dilation (or bulking) upon micro-cracking, as well as the increase in the shear strength of the damaged ceramic with increasing triaxiality. Cavity expansion calculations are used to extract some key physics relevant to penetration. Three domains have been identified: (i) quasi-static, where the ceramic fails due to the outward propagation of a compression damage front, (ii) intermediate velocity, where an outward propagating compression damage front is accompanied by an inward propagating tensile (or spallation) front caused by the reflection of the elastic wave from the outer surface and (iii) high velocity, wherein plastic deformation initiates at the inner surface of the shell followed by spalling within a tensile damage front when the elastic wave reflects from the outer surface. Consistent with experimental observations, the cavity pressure is sensitive to the grain size under quasi-static conditions but relatively insensitive under dynamic loadings.  相似文献   

14.
15.
刘小宇  杨政  张慧梅 《力学学报》2022,54(6):1613-1629
针对现有尺寸效应模型难以体现准脆性材料完整的抗压强度尺寸效应变化规律及其内在机理, 本文通过分析准脆性材料单轴压缩破坏过程中能量输入、储存、整体和局部能量耗散, 建立体现整体和局部损伤的力学模型及描述上述能量演化过程的双线性名义和真实应力应变曲线, 在此基础上确定了名义应力最大时输入能量、储存弹性能、整体和局部能量耗散的表达式, 最后基于能量平衡原理建立抗压强度尺寸效应模型. 抗压强度能量平衡尺寸效应模型能完整体现名义抗压强度尺寸效应, 即随试样尺寸增大, 名义抗压强度在试样尺寸小于等于局部损伤区尺寸时为真实强度, 然后逐渐减小, 最终当试样尺寸趋于无穷大时趋于弹性极限强度; 抗压强度能量平衡尺寸效应模型也能同时体现高径比和试样直径对名义强度的影响, 其包含的参数具有明确的物理意义, 可以反映真实强度、弹性极限强度、名义损伤模量非线性、局部损伤区大小和方向对准脆性材料名义抗压强度尺寸效应的影响; 通过把抗压强度能量平衡尺寸效应模型和现有尺寸效应模型应用于预测各种材料尺寸效应试验和数值模拟数据, 结果表明: 抗压强度能量平衡尺寸效应模型能很好描述试验和数值模拟尺寸效应的非线性变化规律及内在机理, 和现有尺寸效应模型相比, 其总体平均误差最小, 且小于5%.   相似文献   

16.
应力波穿越岩石节理时能量耗散规律的实验研究   总被引:1,自引:0,他引:1  
采用材料试验机和大尺度激光表面仪对大理岩和花岗岩两种岩石进行三点弯曲和粗糙断裂面的扫描实验,详细地分析了粗糙断裂面的分形特征。通过SHPB实验,研究并提出了波能量耗散与断裂面分形维数的定量关系;分析了分形维数对波能量耗散的影响规律。研究得出以下结论:1)随着粗糙断裂面分形维数的增大,通过断裂面时应力波能耗将相应增加;2)应力波能量主要是以热能和塑性变形能耗散。分形维数越大,比表面积则越大,粗糙表面粒子相互摩擦和挤压程度相应增加,导致波的机械能转化成热能和塑性变形能部分增加,因而波动能量耗散越大。  相似文献   

17.
Stationary crack tip fields in bulk metallic glasses under mixed mode (I and II) loading are studied through detailed finite element simulations assuming plane strain, small scale yielding conditions. The influence of internal friction or pressure sensitivity on the plastic zones, notch deformation, stress and plastic strain fields is examined for different mode mixities. Under mixed mode loading, the notch deforms into a shape such that one part of its surface sharpens while the other part blunts. Increase in mode II component of loading dramatically enhances the normalized plastic zone size, lowers the stresses but significantly elevates the plastic strain levels near the notch tip. Higher internal friction reduces the peak tangential stress but increases the plastic strain and stretching near the blunted part of the notch. The simulated shear bands are straight and extend over a long distance ahead of the notch tip under mode II dominant loading. The possible variations of fracture toughness with mode mixity corresponding to failure by brittle micro-cracking and ductile shear banding are predicted employing two simple fracture criteria. The salient results from finite element simulations are validated by comparison with those from mixed mode (I and II) fracture experiments on a Zr-based bulk metallic glass.  相似文献   

18.
作为潜在的工程材料, 金属玻璃在材料科学和凝聚态物理等领域引起广泛的研究兴趣. 金属玻璃结构与性能的关系表明, 金属玻璃的动态非均匀性与其黏弹性和塑性紧密相关. 然而, 宏观应力松弛行为与动态弛豫之间的物理图像并不清晰. 与传统金属材料不同, 金属玻璃的变形机理非常复杂. 应力松弛是一种表征玻璃体系黏弹性和塑性变形机制的有效手段, 从而探索结构和动态非均匀性. 本研究以La30Ce30Al15Co25金属玻璃为模型体系, 在较宽的温度窗口研究了其应力松弛行为. 研究结果表明, 与传统金属玻璃不同, La30Ce30Al15Co25金属玻璃具有明显的β弛豫行为. 基于Kohlarausch-Willams-Watts (KWW)方程的分析表明, 金属玻璃应力松弛为动态不均匀过程; 热动力学分析发现La30Ce30Al15Co25金属玻璃应力松弛存在显著的双阶段行为, 即从高应力条件下应力驱动为主导的松弛行为, 向低应力下热激活为主导的松弛行为发生转变. 通过激活能谱模型分析表明, 应力松弛单元的激活并非均匀, 而是存在能量上的起伏, 金属玻璃对于外力响应是一个渐进过程, 具有动力学不均匀性. 本研究进一步构建了金属玻璃的结构和动态非均匀性之间的关联, 为研究金属玻璃的α弛豫和β弛豫提供了强有力的支撑.   相似文献   

19.
Two families of finite element models of anisotropic, aluminum alloy, open-cell foams are developed and their predictions of elastic properties and compressive strength are evaluated by direct comparison to experimental results. In the first family of models, the foams are idealized as anisotropic Kelvin cells loaded in the <100> direction and in the second family more realistic models, based on Surface Evolver simulations of random soap froth with N3 cells are constructed. In both cases the ligaments are straight but have nonuniform cross sectional area distributions that resemble those of the foams tested. The ligaments are modeled as shear deformable beams with elasto-plastic material behavior. The calculated compressive response starts with a linearly elastic regime. At higher stress levels, inelastic action causes a gradual reduction of the stiffness that eventually leads to a stress maximum, which represents the strength of the material. The periodicity of the Kelvin cell enables calculation of the compressive response up to the limit stress with just a single fully periodic characteristic cell. Beyond the limit stress, deformation localizes along the principal diagonals of the microstructure. Consequently beyond the limit stress the response is evaluated using finite size 3-D domains that allow the localization to develop. The random models consist of 3-D domains of 216, 512 or 1000 cells with periodicity conditions on the compressed ends but free on the sides. The compressive response is also characterized by a limit load instability but now the localization is disorganized resembling that observed in experiments. The foam elastic moduli and strengths obtained from both families of models are generally in very good agreement with the corresponding measurements. The random foam models yield 5–10% stiffer elastic moduli and slightly higher strengths than the Kelvin cell models. Necessary requirements for this high performance of the models are accurate representation of the material distribution in the ligaments and correct modeling of the nonlinear stress–strain response of the aluminum base material.  相似文献   

20.
为研究饱水对砂岩力学参数和能量特征的影响,利用RMT-150B岩石力学系统对煤层顶板砂岩自然和饱水试样进行单轴压缩试验。试验结果表明:饱水对砂岩试样的强度和变形参数均有不同程度的影响,软化系数为0.79,弹性模量降幅为5.25%,变形模量降幅为5.92%;饱水后砂岩试样峰值前吸收能量、可释放弹性能和耗散能均有不同程度降低,吸收能量降幅36.8%,可释放弹性能降幅为34.4%,耗散能降幅为57.7%;饱水后砂岩储蓄能量的能力有较大减弱,脆性减弱,塑性明显增强;饱水砂岩试样压缩过程中积蓄可释放能难以使试样滑移破坏,仍需要吸收部分能量使试样逐步失稳破坏;饱水对砂岩试样压缩过程吸收能量、可释放能量比例关系的影响较小,而对耗散能比例关系的影响较大;自然状态下砂岩试样峰值前相同应变条件下吸收能量、可释放能均明显高于饱水试样对应能量值;深部巷道位置确定和支护设计时应充分考虑水对巷道围岩弱化的影响,对于完整坚硬围岩采用高压注水软化可有效防止冲击地压发生和减缓灾害程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号