首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrogen storage capacity of binary THF-H(2) clathrate hydrate has been determined as a function of formation pressure, THF composition, and time. The amount of hydrogen stored in the stoichiometric hydrate increases with pressure and exhibits asymptotic (Langmuir) behavior to approximately 1.0 wt % H(2). This hydrogen concentration corresponds to one hydrogen molecule occupying each of the small 5(12) cavities and one THF molecule in each large 5(12)6(4) cavity in the hydrate framework. Contrary to previous reports, hydrogen storage was not increased upon decreasing the THF concentration below the stoichiometric 5.6 mol % solution to 0.5 mol %, at constant pressure, even after one week. This provides strong evidence that THF preferentially occupies the large 5(12)6(4) cavity over hydrogen, for the range of experimental conditions tested. The maximum amount of hydrogen stored in this binary hydrate was about 1.0 wt % at moderate pressure (<60 MPa) and is independent of the initial THF concentration over the range of conditions tested.  相似文献   

2.
Binary structure H (sH) hydrogen and methyl-tert-butylether (MTBE) clathrate hydrates are studied with molecular dynamics simulations. Simulations on a 3 x 3 x 3 sH unit cell with up to 4.7 mass % hydrogen gas are run at pressures of 100 bars and 2 kbars at 100 and 273 K. For the small and medium cages of the sH unit cell, H2 guest molecule occupancies of 0, 1 (single occupancy), and 2 (double occupancy) are considered with the MTBE molecule occupying all of the large cages. An increase of the small and medium cage occupancies from 1 to 2 leads to a jump in the unit cell volume and configurational energy. Calculations are also set up with 13, 23, and 89 of the MTBE molecules in the large cages replaced by sets of three to six H2 molecules, and the effects on the configurational energy and volume of the simulation cell are determined. As MTBE molecules are replaced with sets of H2 guests in the large cages, the configurational energy of the unit cell increases. At the lower temperature, the energy and volume of the clathrate are not sensitive to the number of hydrogen guests in the large cages; however, at higher temperatures the repulsions among the H2 guest molecules in the large cages cause an increase in the system energy and volume.  相似文献   

3.
Oxygen hydrate was prepared by reacting oxygen with deuteriated ice at high pressure. Its structure was examined with powder neutron diffraction. It was found to crystallize in the cubic space group witha=17.070(1) Å. The formation of the type II structure rather than type I can be attributed to the larger Langmuir constant of sorption for the oxygen molecules in the 12-hedral cages. The encaged oxygen molecules are orientationally disordered. A comparison of the oxygen thermal parameters in both cages suggests the existence of local potential minima in the 16-hedral cages.Published as NRCC 25940  相似文献   

4.
Molecular dynamics simulations of the pure structure II tetrahydrofuran clathrate hydrate and binary structure II tetrahydrofuran clathrate hydrate with CO(2), CH(4), H(2)S, and Xe small cage guests are performed to study the effect of the shape, size, and intermolecular forces of the small cages guests on the structure and dynamics of the hydrate. The simulations show that the number and nature of the guest in the small cage affects the probability of hydrogen bonding of the tetrahydrofuran guest with the large cage water molecules. The effect on hydrogen bonding of tetrahydrofuran occurs despite the fact that the guests in the small cage do not themselves form hydrogen bonds with water. These results indicate that nearest neighbour guest-guest interactions (mediated through the water lattice framework) can affect the clathrate structure and stability. The implications of these subtle small guest effects on clathrate hydrate stability are discussed.  相似文献   

5.
The structure and composition of bromine clathrate hydrate has been controversial for more than 170 years due to the large variation of its observed stoichiometries. Several different crystal structures were proposed before 1997 when Udachin et al. (Udachin, K. A.; Enright, G. D.; Ratcliffe, C. I.; Ripmeester, J. A. J. Am. Chem. Soc. 1997, 119, 11481) concluded that Br2 forms only the tetragonal structure (TS-I). We show polymorphism in Br2 clathrate hydrates by identifying two distinct crystal structures through optical microscopy and resonant Raman spectroscopy on single crystals. After growing TS-I crystals from a liquid bromine-water solution, upon dropping the temperature slightly below -7 degrees C, new crystals of cubic morphology form. The new crystals, which have a limited thermal stability range, are assigned to the CS-II structure. The two structures are clearly distinguished by the resonant Raman spectra of the enclathrated Br2, which show long overtone progressions and allow the extraction of accurate vibrational parameters: omega(e) = 321.2 +/- 0.1 cm(-1) and omega(e)x(e) = 0.82 +/- 0.05 cm(-1) in TS-I and omega(e) = 317.5 +/- 0.1 cm(-1) and omega(e)x(e) = 0.70 +/- 0.1 cm(-1) in CS-II. On the basis of structural analysis, the discovery of the CS-II crystals implies stability of a large class of bromine hydrate structures and, therefore, polymorphism.  相似文献   

6.
Classical equilibrium molecular dynamics simulations have been performed to investigate dynamical properties of cage radial breathing modes and intra- and inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar and up to 250 K. For the mixed H(2)-THF system in which there is single H(2) occupation of the small cage (labelled "1SC 1LC"), we find that no H(2) migration occurs, and this is also the case for pure H(2) hydrate with single small-cavity occupation and quadruple occupancy for large cages (dubbed "1SC 4LC"). However, for the more densely filled H(2)-THF and pure-H(2) systems, in which there is double H(2) occupation in the small cage (dubbed "2SC 1LC" and "2SC 4LC," respectively), there is an onset of inter-cage H(2) migration events from the small cages to neighbouring cavities at around 200 K, with an approximate Arrhenius temperature-dependence for the migration rate from 200 to 250 K. It was found that these "cage hopping" events are facilitated by temporary openings of pentagonal small-cage faces with the relaxation and reformation of key stabilising hydrogen bonds during and following passage. The cages remain essentially intact up to 250 K, save for transient hydrogen bond weakening and reformation during and after inter-cage hydrogen diffusion events in the 200-250 K range. The "breathing modes," or underlying frequencies governing the variation in the cavities' radii, exhibit a certain overlap with THF rattling motion in the case of large cavities, while there is some overlap of small cages' radial breathing modes with lattice acoustic modes.  相似文献   

7.
The cage occupancy of hydrogen in the single-crystals of simple hydrogen hydrates and hydrogen + argon mixed-gas hydrates was investigated by means of in situ Raman spectroscopy under the three-phase (hydrate + water + fluid) equilibrium condition. In the equilibrium pressure region higher than approximately 25 MPa, four hydrogen cluster and argon competitively occupied the large cages of structure-II hydrogen + argon mixed-gas hydrates. In addition, Raman spectroscopic analysis at liquid nitrogen temperature (77 K) supports that the clusters of two, three, or four hydrogen molecules occupy large cages.  相似文献   

8.
9.
The concept of tuning phenomenon in binary hydrate systems has been suggested to enhance the gas storage capacity through molecular interactions. In this report, the existence of critical guest concentration (CGC) is investigated by means of spectroscopic methods. The existence of the critical guest concentration can act as a limiting factor in the application areas of binary hydrates. Therefore, it should be taken into account before applying this concept to application fields. In addition, further research on this concept using other hydrate systems is required to clarify the present findings.  相似文献   

10.
The structure and dynamics of trimethylene oxide (TMO) and ethylene oxide (EO) structure I (sI) hydrates are reported from single-crystal X-ray diffraction and 2H NMR spectroscopic measurements. The guest molecule positions in the large cage were determined with considerable improvement over previous diffraction work so that a dynamic model that was consistent with these orientations could be developed to explain the 2H NMR data. Reorientations are shown to take place among both symmetry-related and symmetry-independent sites, 16 positions in all. Because of the prochiral nature of the molecules, both guests show 2H NMR line shapes with large asymmetry parameters, rather unusual for guest molecules in the sI hydrate large cage. The results also show that the dipolar axis of the TMO molecule lies close to the 4 bar axis of the cage on average, whereas for EO, this is not the case. For TMO, progressive alignment of the polar axis with decrease of temperature then allows the dipoles to interact more strongly until dipole reversal is quenched at the ordering transition. The lack of ordering of EO is consistent with the much weaker alignment of the molecular dipoles along the 4 bar axis. With the new complementary information on the structure and dynamics from crystallography and NMR, it is possible to understand why the large cage guests order in the large cage of sI hydrate for TMO hydrate but not for EO hydrate.  相似文献   

11.
The Raman spectra of H(2) and HD molecules in simple hydrogen and binary hydrogen-tetrahydrofuran clathrate hydrates have been measured at temperatures as low as 20 K. The rotational bands of trapped molecules in simple and binary hydrates have been analyzed, and the contributions originating from hydrogen molecules in the large cages have been separated from those in the small cages. A theoretical model, consisting in rigid cages enclosing interacting hydrogen molecules, has been exploited to calculate, on the basis of quantum mechanics, the Raman intensity of the rotational transitions for up to two interacting molecules in one cage. A comparison with experiment leads to a clear interpretation of sidebands appearing in the Raman rotational lines. The quantitative agreement between theory and experiment obtained in some cases clarifies the importance of the choice of the interaction potential, and of the proton disorder in the clathrate crystal.  相似文献   

12.
We perform molecular dynamics simulations (up to 6 ns) for the structure I clathrate hydrates of linear molecules CS, CS(2), OCS, and C(2)H(2) in large cages at different temperatures in the stability range to determine the angular distribution and dynamics of the guests in the large cages. The long axes of linear guest molecules in the oblate large structure I clathrate hydrate cages are primarily confined near the equatorial plane of the cage rather than axial regions. This non-uniform spatial distribution leads to well-known anisotropic lineshapes in the solid-state NMR spectra of the guest species. We use the dynamic distribution of guest orientations in the cages during the MD simulations at different temperatures to predict the (13)C NMR powder lineshapes of the guests in the large cages. The length of the guests and intermolecular interactions of the guests in the water cages determine the angular distribution and the mobility of the guests in the sI large cages at different temperatures. At low temperatures the range of motion of the guests in the cages are limited and this is reflected in the skew of the predicted (13)C lineshapes. As the guest molecules reach the fast motion limit at higher temperatures, the lineshapes for CS, OCS, and C(2)H(2) are predicted to have the "standard" powder lineshapes of guest molecules.  相似文献   

13.
Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO(2) molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.  相似文献   

14.
In situ neutron inelastic scattering experiments on hydrogen adsorbed into a fully deutrated tetrahydrofuran-water ice clathrate show that the adsorbed hydrogen has three rotational excitations (transitions between J=0 and 1 states) at approximately 14 meV in both energy gain and loss. These transitions could be unequivocally assigned since there was residual orthohydrogen at low temperatures (slow conversion to the ground state) resulting in an observable J=1-->0 transition at 5 K (kT=0.48 meV). A doublet in neutron energy loss at approximately 28.5 meV is interpreted as J=1-->2 transitions. In addition to the transitions between rotational states, there are a series of peaks that arise from transitions between center-of-mass translational quantum states of the confined hydrogen molecule. A band at approximately 9 meV can be unequivocally interpreted as a transition between translational states, while broad features at 20, 25, 35, and 50-60 meV are also interpreted to as transitions between translational quantum states. A detailed comparison is made with a recent five-dimensional quantum treatment of hydrogen in the smaller dodecahedral cage in the SII ice-clathrate structure. Although there is broad agreement regarding the features such as the splitting of the J=1 degeneracy, the magnitude of the external potential is overestimated. The numerous transitions between translational states predicted by this model are in poor agreement with the experimental data. Comparisons are also made with three simple exactly solved models, namely, a particle in a box, a particle in a sphere, and a particle on the surface of a sphere. Again, there are too many predicted features by the first two models, but there is reasonable agreement with the particle on a sphere model. This is consistent with published quantum chemistry results for hydrogen in the dodecahedral 5(12) cage, where the center of the cage is found to be energetically unfavorable, resulting in a shell-like confinement for the hydrogen molecule wave function. These results demonstrate that translational quantum effects are very significant and a classical treatment of the hydrogen molecule dynamics is inappropriate under such conditions.  相似文献   

15.
This work reports the dissociation pressures of hydrogen sulphide clathrate hydrates in the presence of single and mixed aqueous solutions of NaCl, KCl and CaCl2 at different temperatures and various concentrations of salt(s) in aqueous solution. The equilibrium data were generated using an isochoric pressure-search method. These data are compared with some selected experimental data from the literature on the dissociation conditions of hydrogen sulphide clathrate hydrates in the presence of pure water to show the inhibition effects of the aforementioned aqueous solutions. Comparisons between our experimental data and the corresponding literature data show some disagreements in the literature data.  相似文献   

16.
17.
The mechanism of reversible hydrogen activation by ansa-aminoboranes, 1-N-TMPH-CH(2)-2-[HB(C(6)F(5))(2)]C(6)H(4) (NHHB), was studied by neutron diffraction and thermogravimetric mass-spectroscopic experiments in the solid state as well as with NMR and FT-IR spectroscopy in solution. The structure of the ansa-ammonium borate NHHB was determined by neutron scattering, revealing a short N-H···H-B dihydrogen bond of 1.67 ?. Moreover, this intramolecular H-H distance was determined in solution to be also 1.6-1.8 ? by (1)H NMR spectroscopic T(1) relaxation and 1D NOE measurements. The X-ray B-H and N-H distances deviated from the neutron and the calculated values. The dynamic nature of the molecular tweezers in solution was additionally studied by multinuclear and variable-temperature NMR spectroscopy. We synthesized stable, individual isotopic isomers NDDB, NHDB, and NDHB. NMR measurements revealed a primary isotope effect in the chemical shift difference (p)Δ(1)H(D) = δ(NH) - δ(ND) (0.56 ppm), and hence supported dihydrogen bonding. The NMR studies gave strong evidence that the structure of NHHB in solution is similar to that in the solid state. This is corroborated by IR studies providing clear evidence for the dynamic nature of the intramolecular dihydrogen bonding at room temperature. Interestingly, no kinetic isotope effect was detected for the activation of deuterium hydride by the ansa-aminoborane NB. Theoretical calculations attribute this to an "early transition state". Moreover, 2D NOESY NMR measurements support fast intermolecular proton exchange in aprotic CD(2)Cl(2) and C(6)D(6).  相似文献   

18.
At relatively high temperatures (200–270K), clathrate hydrate cages achieve their full crystallographic symmetry because of time averaging of different cage configurations which exist because of disorder in the water molecule orientations. The average orientation of guest molecules in the cages can be obtained from the NMR spectrum, in case of spin 1/2 nuclei from the nuclear shielding tensor, in case of spin 1 nuclei from the quadrupole coupling tensor. Guest molecules studied include carbon dioxide, carbonyl sulphide, methyl-d3 fluoride, methyl-d3 chloride, methyl-d3 bromide, ethane-d6, acetylene-d2 in the structure I hydrates, and methyl-d3 iodide in the structure II hydrate.For the slightly flattened large cage of structure I hydrate, the guest molecules rotate so that the plane which contains the long axis of the molecule is confined to be nearer to the equatorial plane of the cage than the axial regions.Since the structure II large cage has tetrahedral symmetry on time average, it exerts no orienting effect on guest molecules.NRCC no. 32722.  相似文献   

19.
20.
Lithium has been extracted from the layered compound LiVO2 by chemical oxidation with bromine. Previous X-ray data have shown that in Li1−xVO2 lithium extraction beyond x ≈ 0.33 is accompanied by migration of one-third of the vanadium ions into the lithium-deficient layer to stabilize the structure; little information about the location of the lithium ions could be gathered from this data. The neutron diffraction data presented in this paper show that at a composition Li0.22VO2, determined by atomic absorption spectroscopy, the residual lithium ions are distributed over the octahedral sites of the original lithium layer; the possibility that a small fraction of the lithium ions partially occupy the tetrahedral sites in this layer cannot be discounted. No significant occupation by lithium of the tetrahedral or octahedral vacancies in the vanadium-rich layer could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号