首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In bilevel optimization problems there are two decision makers, the leader and the follower, who act in a hierarchy. Each decision maker has his own objective function, but there are common constraints. This paper deals with bilevel assignment problems where each decision maker controls a subset of edges and each edge has a leader’s and a follower’s weight. The edges selected by the leader and by the follower need to form a perfect matching. The task is to determine which edges the leader should choose such that his objective value which depends on the follower’s optimal reaction is maximized. We consider sum- and bottleneck objective functions for the leader and follower. Moreover, if not all optimal reactions of the follower lead to the same leader’s objective value, then the follower either chooses an optimal reaction which is best (optimistic rule) or worst (pessimistic rule) for the leader. We show that all the variants arising if the leader’s and follower’s objective functions are sum or bottleneck functions are NP-hard if the pessimistic rule is applied. In case of the optimistic rule the problem is shown to be NP-hard if at least one of the decision makers has a sum objective function.  相似文献   

2.
Classic bilevel programming deals with two level hierarchical optimization problems in which the leader attempts to optimize his/her objective, subject to a set of constraints and his/her follower’s solution. In modelling a real-world bilevel decision problem, some uncertain coefficients often appear in the objective functions and/or constraints of the leader and/or the follower. Also, the leader and the follower may have multiple conflicting objectives that should be optimized simultaneously. Furthermore, multiple followers may be involved in a decision problem and work cooperatively according to each of the possible decisions made by the leader, but with different objectives and/or constraints. Following our previous work, this study proposes a set of models to describe such fuzzy multi-objective, multi-follower (cooperative) bilevel programming problems. We then develop an approximation Kth-best algorithm to solve the problems.  相似文献   

3.
Bilevel linear optimization problems are the linear optimization problems with two sequential decision steps of the leader and the follower. In this paper, we focus on the ambiguity of coefficients of the follower in his objective function that hinder the leader from exactly calculating the rational response of the follower. Under the assumption that the follower’s possible range of the ambiguous coefficient vector is known as a certain convex polytope, the leader can deduce the possible set of rational responses of the follower. The leader further assumes that the follower’s response is the worst-case scenario to his objective function, and then makes a decision according to the maximin criteria. We thus formulate the bilevel linear optimization problem with ambiguous objective function of the follower as a special kind of three-level programming problem. In our formulation, we show that the optimal solution locates on the extreme point and propose a solution method based on the enumeration of possible rational responses of the follower. A numerical example is used to illustrate our proposed computational method.  相似文献   

4.
In this paper, we study a capacitated facility location problem with two decision makers. One (say, the leader) decides on which subset of facilities to open and the capacity to be installed in each facility with the goal of minimizing the overall costs; the second decision maker (say, the follower), once the facilities have been designed, aims at maximizing the profit deriving from satisfying the demands of a given set of clients beyond a certain threshold imposed by the leader. The leader can foresee but cannot control the follower’s behavior. The resulting mathematical formulation is a discrete–continuous bilevel optimization problem. We propose a decomposition approach to cope with the bilevel structure of the problem and the integrality of a subset of variables under the control of the leader. Such a proposal has been tested on a set of benchmark instances available in the literature.  相似文献   

5.
We consider a class of bilevel linear mixed-integer programs (BMIPs), where the follower’s optimization problem is a linear program. A typical assumption in the literature for BMIPs is that the follower responds to the leader optimally, i.e., the lower-level problem is solved to optimality for a given leader’s decision. However, this assumption may be violated in adversarial settings, where the follower may be willing to give up a portion of his/her optimal objective function value, and thus select a suboptimal solution, in order to inflict more damage to the leader. To handle such adversarial settings we consider a modeling approach referred to as \(\alpha \)-pessimistic BMIPs. The proposed method naturally encompasses as its special classes pessimistic BMIPs and max–min (or min–max) problems. Furthermore, we extend this new modeling approach by considering strong-weak bilevel programs, where the leader is not certain if the follower is collaborative or adversarial, and thus attempts to make a decision by taking into account both cases via a convex combination of the corresponding objective function values. We study basic properties of the proposed models and provide numerical examples with a class of the defender–attacker problems to illustrate the derived results. We also consider some related computational complexity issues, in particular, with respect to optimistic and pessimistic bilevel linear programs.  相似文献   

6.
In this paper we propose exact solution methods for a bilevel uncapacitated lot-sizing problem with backlogs. This is an extension of the classical uncapacitated lot-sizing problem with backlogs, in which two autonomous and self-interested decision makers constitute a two-echelon supply chain. The leader buys items from the follower in order to meet external demand at lowest cost. The follower also tries to minimize its costs. Both parties may backlog. We study the leader’s problem, i.e., how to determine supply requests over time to minimize its costs in view of the possible actions of the follower. We develop two mixed-integer linear programming reformulations, as well as cutting planes to cut off feasible, but suboptimal solutions. We compare the reformulations on a series of benchmark instances.  相似文献   

7.
对下层最优反馈为离散有限多个的二层规划问题的部分合作模型进行探讨. 当下层的合作程度依赖于上层的决策变量时, 给出一个确定合作系数函数的一般方法, 进而得到一个新的部分合作模型. 在适当地假设下, 可保证所给的部分合作模型一定可以找到比悲观解要好的解, 并结合新的部分合作模型对原不适定问题进行分析, 得到了一些有益的结论. 最后以实际算例说明了所给部分合作模型的可行性.  相似文献   

8.
Herminia I.Calvete等研究了一主多从双层确定性线性规划问题,证明了这类问题等价于一类常规的双层线性规划问题.本文在此基础上,推广确定型的问题到随机型优化情况,考虑了一类下层优化相互独立的一主多从双层随机优化问题(SLBMFP).在特定的随机变量分布条件下,理论上证明了该类问题可以转化为一主一从双层确定性优化问题.本文的研究对于求解一主多从双层随机优化模型,解决此类模型在实际应用中的问题具有一定的意义.  相似文献   

9.
In this article we study generalized Nash equilibrium problems (GNEP) and bilevel optimization side by side. This perspective comes from the crucial fact that both problems heavily depend on parametric issues. Observing the intrinsic complexity of GNEP and bilevel optimization, we emphasize that it originates from unavoidable degeneracies occurring in parametric optimization. Under intrinsic complexity, we understand the involved geometrical complexity of Nash equilibria and bilevel feasible sets, such as the appearance of kinks and boundary points, non-closedness, discontinuity and bifurcation effects. The main goal is to illustrate the complexity of those problems originating from parametric optimization and singularity theory. By taking the study of singularities in parametric optimization into account, the structural analysis of Nash equilibria and bilevel feasible sets is performed. For GNEPs, the number of players’ common constraints becomes crucial. In fact, for GNEPs without common constraints and for classical NEPs we show that—generically—all Nash equilibria are jointly nondegenerate Karush–Kuhn–Tucker points. Consequently, they are isolated. However, in presence of common constraints Nash equilibria will constitute a higher dimensional set. In bilevel optimization, we describe the global structure of the bilevel feasible set in case of a one-dimensional leader’s variable. We point out that the typical discontinuities of the leader’s objective function will be caused by follower’s singularities. The latter phenomenon occurs independently of the viewpoint of the optimistic or pessimistic approach. In case of higher dimensions, optimistic and pessimistic approaches are discussed with respect to possible bifurcation of the follower’s solutions.  相似文献   

10.
We address a generic mixed-integer bilevel linear program (MIBLP), i.e., a bilevel optimization problem where all objective functions and constraints are linear, and some/all variables are required to take integer values. We first propose necessary modifications needed to turn a standard branch-and-bound MILP solver into an exact and finitely-convergent MIBLP solver, also addressing MIBLP unboundedness and infeasibility. As in other approaches from the literature, our scheme is finitely-convergent in case both the leader and the follower problems are pure integer. In addition, it is capable of dealing with continuous variables both in the leader and in follower problems—provided that the leader variables influencing follower’s decisions are integer and bounded. We then introduce new classes of linear inequalities to be embedded in this branch-and-bound framework, some of which are intersection cuts based on feasible-free convex sets. We present a computational study on various classes of benchmark instances available from the literature, in which we demonstrate that our approach outperforms alternative state-of-the-art MIBLP methods.  相似文献   

11.
This paper considers a particular case of linear bilevel programming problems with one leader and multiple followers. In this model, the followers are independent, meaning that the objective function and the set of constraints of each follower only include the leader’s variables and his own variables. We prove that this problem can be reformulated into a linear bilevel problem with one leader and one follower by defining an adequate second level objective function and constraint region. In the second part of the paper we show that the results on the optimality of the linear bilevel problem with multiple independent followers presented in Shi et al. [The kth-best approach for linear bilevel multi-follower programming, J. Global Optim. 33, 563–578 (2005)] are based on a misconstruction of the inducible region.  相似文献   

12.

We introduce a new, and elementary, approximation method for bilevel optimization problems motivated by Stackelberg leader-follower games. Our technique is based on the notion of two-scale Gibbs measures. The first scale corresponds to the cost function of the follower and the second scale to that of the leader. We explain how to choose the weights corresponding to these two scales under very general assumptions and establish rigorous Γ-convergence results. An advantage of our method is that it is applicable both to optimistic and to pessimistic bilevel problems.

  相似文献   

13.
We consider a hierarchical system where a leader incorporates into its strategy the reaction of the follower to its decision. The follower's reaction is quite generally represented as the solution set to a monotone variational inequality. For the solution of this nonconvex mathematical program a penalty approach is proposed, based on the formulation of the lower level variational inequality as a mathematical program. Under natural regularity conditions, we prove the exactness of a certain penalty function, and give strong necessary optimality conditions for a class of generalized bilevel programs.  相似文献   

14.
A sales territory design problem faced by a manufacturing company that supplies products to a group of customers located in a service region is addressed in this paper. The planning process of designing the territories has the objective to minimizing the total dispersion of the customers without exceeding a limited budget assigned to each territory. Once territories have been determined, a salesperson has to define the day-by-day routes to satisfy the demand of customers. Currently, the company has established a service level policy that aims to minimize total waiting times during the distribution process. Also, each territory is served by a single salesperson. A novel discrete bilevel optimization model for the sales territory design problem is proposed. This problem can be seen as a bilevel problem with a single leader and multiple independent followers, in which the leader’s problem corresponds to the design of territories (manager of the company), and the routing decision for each territory corresponds to each follower. The hierarchical nature of the current company’s decision-making process triggers some particular characteristics of the bilevel model. A brain storm algorithm that exploits these characteristics is proposed to solve the discrete bilevel problem. The main features of the proposed algorithm are that the workload is used to verify the feasibility and to cluster the leader’s solutions. In addition, four discrete mechanisms are used to generate new solutions, and an elite set of solutions is considered to reduce computational cost. This algorithm is used to solve a real case study, and the results are compared against the current solution given by the company. Results show a reduction of more than 20% in the current costs with the solution obtained by the proposed algorithm. Furthermore, a sensitivity analysis is performed, providing interesting managerial insights to improve the current operations of the company.  相似文献   

15.
This paper is concerned with the characterization of optimal strategies for a service firm acting in an oligopolistic environment. The decision problem is formulated as a leader–follower game played on a transportation network, where the leader firm selects a revenue-maximizing price schedule that takes explicitly into account the rational behavior of the customers. In the context of our analysis, the follower’s problem is associated with a competitive network market involving non atomic customer groups. The resulting bilevel model can therefore be viewed as a model of product differentiation subject to structural network constraints.  相似文献   

16.
In this paper, an interactive fuzzy decision making method is proposed for solving bilevel programming problem. Introducing a new balance function, we consider the overall satisfactory balance between the leader and the follower. Then, a satisfactory solution can be obtained by the proposed method. Finally, numerical examples are reported to illustrate the feasibility of the proposed method.  相似文献   

17.
In this paper, we present a bilevel programming formulation for the problem of strategic bidding under uncertainty in a wholesale energy market (WEM), where the economic remuneration of each generator depends on the ability of its own management to submit price and quantity bids. The leader of the bilevel problem consists of one among a group of competing generators and the follower is the electric system operator. The capability of the agent represented by the leader to affect the market price is considered by the model. We propose two solution approaches for this non-convex problem. The first one is a heuristic procedure whose efficiency is confirmed through comparisons with the optimal solutions for some instances of the problem. These optimal solutions are obtained by the second approach proposed, which consists of a mixed integer reformulation of the bilevel model. The heuristic proposed is also compared to standard solvers for nonlinearly constrained optimization problems. The application of the procedures is illustrated in case studies with configurations derived from the Brazilian power system.  相似文献   

18.
The majority of research on bilevel programming has centered on the linear version of the problem in which only one leader and one follower are involved. This paper addresses linear bilevel multi-follower programming (BLMFP) problems in which there is no sharing information among followers. It explores the theoretical properties of linear BLMFP, extends the Kth-best approach for solving linear BLMFP problems and gives a computational test for this approach.  相似文献   

19.
Journal of Optimization Theory and Applications - We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack, while the follower chooses a feasible...  相似文献   

20.
The bilevel programming problem (BLPP) is equivalent to a two-person Stackelberg game in which the leader and follower pursue individual objectives. Play is sequential and the choices of one affect the choices and attainable payoffs of the other. The purpose of this paper is to investigate an extension of the linear BLPP where the objective functions of both players are bilinear. To overcome certain discontinuities in the master problem, a regularized term is added to the follower objective function. Using ideas from parametric programming, the generalized Jacobian and the pseudodifferential of the regularized follower solution function are computed. This allows us to develop a bundle trust-region algorithm. Convergence analysis of the proposed methodology is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号