首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
人为操控电子的内禀自由度是现代电子器件的核心和关键.如今电子的电荷和自旋自由度已经被广泛地应用于逻辑计算与信息存储.以二维过渡金属硫属化合物为代表的二维原子层材料由于其具有独特的谷自由度和优异的物理性质,成为了新型谷电子学器件研究的优选材料体系.本文介绍了能谷的基本概念、谷材料的基本物理性质、谷效应的调控和谷电子学器件的研究进展,并对谷电子学材料和器件的研究进行了总结与展望.  相似文献   

2.
自旋电子学和谷电子学作为半导体物理的新方向,旨在利用电子的自旋和谷自由度来实现新型的逻辑运算和信息处理.圆偏振光伏效应是近年来研究自旋电子学和谷电子学的重要实验手段,也是实现新型的自旋与谷存储器件的一个可能的方式,为下一代的器件信息的处理方法提出了一种新的可能.圆偏振光伏效应是一种二阶非线性光电响应,是指材料在圆偏振光的激发下产生随偏振角度变化的光电流.光电流的产生依赖于自旋、谷极化、对称性以及Berry曲率等诸多因素,可以揭示出材料深层次的物理性质.本篇综述主要讨论了在不同材料体系产生圆偏振光伏效应的主要机制,包括在半导体异质结由对称性破缺导致的Rashba自旋轨道耦合引起的圆偏振光电流,以及拓扑Weyl半金属由Berry曲率以及泡利阻塞造成的电子动量选择,以及二维层状过渡金属硫化物中圆偏振光产生的谷极化电流等.在此基础上,本文还简略介绍了一些新型二维材料中的圆偏振光伏效应的可能实现的方式,以及一些潜在的应用.  相似文献   

3.
邓富胜  孙勇  刘艳红  董丽娟  石云龙 《物理学报》2017,66(14):144204-144204
将石墨烯中赝磁场的产生机理运用于光子石墨烯,通过在光子石墨烯中引入晶格有规律单轴形变的方式,理论分析得到了谷依赖的均匀赝磁场,并通过数值模拟的方法观察到明显的谷霍尔效应.这种谷霍尔效应的显著程度随晶格形变度的增加而加强.在具有一定损耗的电介质材料构成的形变光子石墨烯中仍可观察到明显的谷霍尔效应.随着电介质材料损耗的增加,谷霍尔效应导致的波束转弯效果依然能够保持,只是强度逐渐变弱.类似于自旋电子学中的自旋霍尔效应,这种光子石墨烯中等效赝磁场作用下的谷霍尔效应在未来谷极化器件的设计和应用中具有重要意义.  相似文献   

4.
《物理》2016,(8)
物质材料伴随着体系维度的降低往往会衍生出新的特性,展现丰富的物理现象,并带来新奇可观测及可操控的量子态。作为新兴超薄半导体出现的二维六族过渡金属硫化物,除了具有区别于块体材料的直接能隙,在其第一布里渊区里还存在着简并但不等价的分立能谷。由于体系中空间反演对称性的破缺,在这些能谷里,电子及空穴具有非零且相反的轨道磁矩以及贝里曲率,从而提供了利用外场对能谷自由度进行量子调控的前提。文章对二维六族过渡金属硫化物中能谷电子学的发展进行了介绍,并对未来的潜在发展方向做出一些展望。  相似文献   

5.
冯硝  徐勇  何珂  薛其坤 《物理》2022,(9):624-632
近20年来,拓扑量子物态和材料已成为凝聚态物理领域最为重要、发展最快的前沿领域之一。文章简单回顾这一领域的研究进展,介绍包括拓扑材料体系、磁性拓扑材料、拓扑超导体及相关物理。这些材料涉及的研究范畴广泛,未来可能推动电子学、自旋电子学、光学等各个方向的基础研究和产业发展。  相似文献   

6.
《物理》2016,(8)
能谷自由度是近年来随着新型二维量子材料的研究而兴起的新焦点,而非线性光学则是现代光学学科中的重要分支。这两个看似没有任何交集的领域由于都对物质材料的中心反演对称破缺极度敏感而密切关联。文章将以过渡金属二硫属化物的单层和少层为代表,介绍能谷自由度与非线性光学中最基本的二次谐波过程之间的关系。由此得出,非线性光学可以成为研究能谷物理的重要技术和手段。同时,过渡金属二硫属化物等能谷材料也大大丰富了非线性光学的研究对象,预期二维材料和器件可以成为非线性光学研究的新机遇和新热点。  相似文献   

7.
王永 《物理》2006,35(11):917-918
文章介绍了由于自旋轨道耦合导致的电子的电偶极矩在自旋电子学理论中的基本意义。研究发现,该电偶极矩与自旋流张量的反对称部分直接相关,它不仅直接导致可观测的电磁学效应,而且与电子在电场受到的力以及力矩有关,从而为自旋的电子学操控提供了可能。  相似文献   

8.
《物理》2017,(5)
电子的电荷自由度与自旋自由度是现代电子器件的基础核心之一。随着二维材料,尤其是二维过渡族硫化物(TMDCs)的研究深入,另一个自由度——能谷——也引起了人们极大的研究兴趣。由于TMDCs中自旋与能谷的强耦合,自旋(能谷)可以通过能谷(自旋)方便地进行调控和探测,为电子自旋和能谷的相关领域提供了新的手段和方法。文章首先对能谷自由度以及TMDCs中自旋与能谷的强耦合进行了介绍,然后介绍基于圆偏振光激发和自旋注入两种方式进行的自旋调控和探测的理论和实验工作,最后对基于能谷的自旋调控进行了总结和展望。  相似文献   

9.
孙家涛  孟胜 《物理学报》2015,64(18):187301-187301
电子在晶格周期性势场影响下的运动遵循布洛赫定理. 布洛赫电子除了具有电荷和自旋两个内禀自由度外, 还有其他内禀自由度. 能带色散曲线上的某些极值点作为谷自由度, 具有独特的电子结构和运动规律. 本文从布洛赫电子的谷自由度出发, 简单介绍传统半导体的谷电子性质研究现状, 并重点介绍新型二维材料体系, 如石墨烯、硅烯、硫族化合物等材料中谷相关的物理特性. 有效利用谷自由度的新奇输运特性, 将其作为信息的载体可以制作出新颖的纳米光电子器件, 并有望造就下一代纳电子器件的新领域, 即谷电子学(valleytronics).  相似文献   

10.
张一民 《物理学报》1960,16(8):431-440
本文介绍了固体电子学发展的全貌,特别对国际上发展迅速的一些尖端问题和新的动向,作了概括性的说明。文中首先讨论了固体电子学高速发展的客观形势和要求以及它在发展中的特色。把固体电子学的具体内容按固体现象、元件及应用加以概括,并且列举了较重要的电子学系统的固体元件化。全文的重点是讨论固体电子学发展的四大尖端:超快速、超高频、超小型和量子无线电物理,以及一些新的动向。指出元件和线路的统一是整个发展中的特色。在这个趋势下,物理研究、材料器件制备和线路应用将进一步结合起来,其结果将导致新电子学技术向更高阶段迈进。最后总结了目前发展中几个基本性的理论课题。  相似文献   

11.
刘娟  胡锐  范志强  张振华 《物理学报》2017,66(23):238501-238501
基于密度泛函理论的第一性原理计算方法,研究了多种过渡金属(TM)掺杂扶手椅型氮化硼纳米带(ABNNR-TM)的结构特点、磁电子特性及力-磁耦合效应.计算的结合能及分子动力学模拟表明ABNNRTM的几何结构是较稳定的,同时发现对于不同的TM掺杂,ABNNRs能表现出丰富的磁电子学特性,可以是双极化磁性半导体、一般磁性半导体、无磁半导体或无磁金属.双极化磁性半导体是一种重要的稀磁半导体材料,它在巨磁阻器件和自旋整流器件上有重要的应用.此外,力-磁偶合效应研究表明:ABNNR-TM的磁电子学特性对应力作用十分敏感,能实现无磁金属、无磁半导体、磁金属、磁半导体、双极化磁性半导体、半金属等之间的相变.特别是呈现的宽带隙半金属对于发展自旋电子器件有重要意义.这些结果表明:可以通过力学方法来调控ABNNR-TM的磁电子学特性.  相似文献   

12.
谷电子材料通过调节谷自由度编码和处理信息,在下一代信息存储器件中极具应用潜力。谷自由度与多种铁性序参量相互耦合,可以实现非易失的信息存储,这同时促进了谷物理和多铁性物理的发展。文章首先介绍谷电子学物理背景,列举出各类存在自发谷极化的本征谷材料,随后概述二维多铁材料的磁电谷耦合。最后,关注了谷电子器件最新进展,对二维铁谷材料多铁耦合的发展前景做出展望。  相似文献   

13.
半金属磁体   总被引:3,自引:0,他引:3  
孙华  雎胜  李振亚 《物理》2002,31(5):275-281
半金属磁体是近些年来日益受到关注的一种新材料,也是物质具有一种新形态,在半金属磁体的能带结构中,两个自旋子能带分别具有金属性与绝缘性,从而产生自旋完全极化的传导电子,这一特性使它有可能在新一代微电子设备中发挥重要作用,并为极化输运理论及自旋电子学的研究开辟崭新的领域,文章主要介绍了半金属磁体的命名、特征和几种典型的材料,回顾了在寻找半金属磁体过程中的理论计算和实验研究的发展历程,并对巳在半金属磁体材料中发现的一些具有应用价值的磁输运现象作了阐述。  相似文献   

14.
一、概况 量子电子学是用量子理论来研究电子器件的一门科学.是无线电电子学的一个新的研究前沿.1955年和1960年微波量子放大器和激光器的相继出现,以及光通讯、能源和材料科学研究的需要,量子电子学得到了飞快的发展,著名的美国电气和电子学工程师学会(IEEE)从1965年开始发行量子电子学期刊,苏联科学院也于1971年开始发行量子电子学刊物.到目前为止,已召开了12次国际量子电子学会议(每两年一次).麻省理工学院等知名学府都开设了量子电子学课程,近十年来,一些有名的教授专家撰写了不少教材和专著.在我国,中国科学院物理所、上海技术物理所…  相似文献   

15.
黄诗浩  谢文明  汪涵聪  林光杨  王佳琪  黄巍  李成 《物理学报》2018,67(4):40501-040501
性能优越的Si基高效发光材料与器件的制备一直是Si基光电集成电路中最具挑战性的课题之一.Si基Ge材料不仅与成熟的硅工艺相兼容,而且具有准直接带特性,被认为是实现Si基激光器最有希望的材料.对Si基Ge材料N型掺杂的研究有利于提示出其直接带发光增强机理.本文研究了N型掺杂Si基Ge材料导带电子的晶格散射过程.N型掺杂Si基Ge材料具有独特的双能谷(Γ能谷与L能谷)结构,它将通过以下两方面的竞争关系提高直接带导带底电子的占有率:一方面,处于Γ能谷的导带电子通过谷间光学声子的散射方式散射到L能谷;另一方面,处于L能谷的导带电子通过谷内光学声子散射以及二次谷间光学声子散射或者直接通过谷间光学声子散射的方式跃迁到Γ能谷.当掺杂浓度界于10~(17)cm~(-3)到10~(19)cm~(-3)时,适当提高N型掺杂浓度有利于提高直接带Γ能谷导带底电子占有率,进而提高Si基Ge材料直接带发光效率.  相似文献   

16.
本文基于k·p 理论框架, 分析了单轴应力对导带能带结构的影响, 详细讨论了剪切应力作用下布里渊区边界X点处Δ1和Δ2′ 能带之间的耦合作用及其对导带能谷极小值的改变, 由此进一步给出了能谷极值点附近的色散关系. 最后通过不同能谷之间的坐标变换, 得到了任意单轴应力作用下每个能谷的色散关系. 本文的研究可以为单轴应变Si材料物理性质的理解以及对反型层能带结构、电学特性的相关研究提供一定的理论参考.  相似文献   

17.
张新成  廖文虎  左敏 《物理学报》2018,67(10):107101-107101
基于紧束缚近似下的低能有效哈密顿模型和久保线性响应理论,研究了外部非共振圆偏振光作用下单层二硫化钼(MoS_2)电子结构及其自旋/谷输运性质.研究结果表明:单层MoS_2布里渊区K谷和K′谷附近自旋依赖子带间的能隙随着非共振右旋圆偏振光引起的有效耦合能分别线性增大和先减小后增大,随着非共振左旋圆偏振光引起的有效耦合能分别先减小后增大和线性增大,实现了系统能带结构有趣的半导体-半金属-半导体转变.此外,单层MoS_2在外部非共振圆偏振光作用下,呈现有趣的量子化横向霍尔电导和自旋/谷霍尔电导,自旋极化率在非共振右/左旋圆偏振光有效耦合能±0.79 eV附近达到最大并发生由正到负或由负到正的急剧转变,谷极化率随着非共振圆偏振光有效耦合能先增大后减小并在其绝对值0.79-0.87 eV范围内达到100%.因而,可以利用外部非共振圆偏振光将单层MoS_2调制成自旋/谷以及光电特性优异的新带隙材料.  相似文献   

18.
二维材料及其异质结在电子学、光电子学等领域具有潜在应用,是延续摩尔定律的候选电子材料.二维材料的转移对于物性测量与器件构筑至关重要.本文综述了一些具有代表性的转移方法,详细介绍了各个方法的操作步骤,并基于转移后样品表面清洁程度、转移所需时间以及操作难易等方面对各个转移方法进行了对比归纳.经典干、湿法转移技术是进行物理堆叠制备原子级平整且界面清晰范德瓦耳斯异质结的常用手段,结合惰性气体保护或在真空条件下操作还可以避免转移过程中二维材料破损和界面吸附.高效、无损大面积转移方法为二维材料异质结构建和材料本征物理化学性质测量提供了强有力的技术保障.转移技术的优化将进一步扩展二维材料在高温超导、拓扑绝缘体、低能耗器件、自旋谷极化、转角电子学和忆阻器等领域的研究.  相似文献   

19.
《物理》2018,(11)
半导体材料与器件在当代信息社会中扮演着核心角色,相关产品几乎渗透了人类生活的各个角落。文章简要回顾了半导体的研究历史,介绍了半导体材料与相关应用,阐述了半导体异质结器件的工作原理,并展示了半导体自旋电子学及低维窄禁带半导体纳米结构的研究现状与发展前景。  相似文献   

20.
量子材料的拓扑物态的研究是当前凝聚态物理的重要前沿.区别于局域对称性破缺对物质状态进行分类的传统方式,量子物态可以用微观体系波函数的拓扑结构进行分类.这些全新的拓扑物态有望颠覆传统的微电子学并进而推动拓扑电子学的迅猛发展.当前大部分理论和实验研究集中于研究量子材料的平衡态性质.周期性光场驱动下量子材料远离平衡态、而达到非平衡态时的拓扑物态近年来受到人们的广泛关注.本文首先回顾周期场驱动下非平衡态的弗洛凯(Floquet)理论方法,分别介绍无质量(如石墨烯)、有质量(如MoS_2)等狄拉克费米子材料体系在远离平衡态下的拓扑物态,利用光场与量子物态的相干耦合实现对量子材料非平衡物态的调控;从原子制造角度出发,光场诱导的相干声子态直接改变了量子材料中电子跃迁的大小,进而调控量子材料的非平衡拓扑物态.量子材料中丰富的声子态为非平衡拓扑物态的调控提供了更多的可能性.最后,文章展望了量子材料非平衡拓扑物态在超快相变以及瞬态物态调节等未来可能发展方向的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号