首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
刁卓 《数学进展》2020,(1):13-19
超图H=(V,E)顶点集为V,边集为E.S■V是H的顶点子集,如果H/S不含有圈,则称S是H的点反馈数,记τc(H)是H的最小点反馈数.本文证明了:(i)如果H是线性3-一致超图,边数为m,则τc(H)≤m/3;(ii)如果H是3-一致超图,边数为m,则τc(H)≤m/2并且等式成立当且仅当H任何一个连通分支是孤立顶点或者长度为2的圈.A■V是H的边子集,如果H\A不含有圈,则称A是H的边反馈数,记τc′(H)是H的最小边反馈数.本文证明了如果H是含有p个连通分支的3-一致超图,则τc’(H)≤2m-n+p.  相似文献   

2.
若从一个图中去掉某些顶点后得到的导出子图是无圈图,则所去的那些顶点组成的集合就是原图的反馈点集.本文主要考虑外平面图中的反馈点集并给出了一个求外平面图最小顶点赋权反馈点集的线性时间算法.  相似文献   

3.
1IntroductionLetG=(VE)beaconnectedsimplegraph.AsubsetFofvertexsetViscalIedafeedbackvertexsetofGifthegraPhGFisaf0rest.ThecardinaIity0faminimumfeedbackvertexset0fGisdenotedbyf(G).AvertexsubsetJofvertexsetViscaJledallonseparatingindependentsetofG,ifJisanilldependentsetofVandGJisconnected.Thema-xiammcardinalityofnollseparatingindependelltsetofGisden0tedbyz(G)andiscalledthenonseparatingindepelldentnumberofG,AgraphGiscalledacactusifGisc0nnectedandanytwocyclesofGaredisjoint.Avertexvofacon…  相似文献   

4.
A subset of the vertex set of a graph is a feedback vertex set of the graph if the resulting graph is a forest after removed the vertex subset from the graph. A polynomial algorithm for finding a minimum feedback vertex set of a 3-regular simple graph is provided.  相似文献   

5.
A feedback vertex set is a subset of vertices in a graph, whose deletion from the graph makes the resulting graph acyclic. In this paper, we study the minimum-weight feedback vertex set problem in seriesparallel graphs and present a linear-time exact algorithm to solve it.  相似文献   

6.
A divide-and-conquer approach for the feedback arc set is presented. The divide step is performed by solving a minimum bisection problem. Two strategies are used to solve minimum bisection problem: A heuristic based on the stochastic evolution methodology, and a heuristic based on dynamic clustering. Empirical results are presented to compare our method with other approaches. An algorithm to construct test cases for the feedback arc set problem with known optimal number of feedback arcs, is also presented.  相似文献   

7.
We present a polynomial time algorithm to compute a minimum (weight) feedback vertex set for AT-free graphs, and extending this approach we obtain a polynomial time algorithm for graphs of bounded asteroidal number.  相似文献   

8.
Isaak posed the following problem. Suppose T is a tournament having a minimum feedback arc set, which induces an acyclic digraph with a hamiltonian path. Is it true that the maximum number of arc‐disjoint cycles in T equals the cardinality of minimum feedback arc set of T? We prove that the answer to the problem is in the negative.  相似文献   

9.
We present a simple 3-approximation algorithm for the feedback vertex set problem in a bipartite tournament, improving on the approximation ratio of 3.5 achieved by the best previous algorithms.  相似文献   

10.
Given an undirected graph with weights on its vertices, the k most vital nodes independent set (k most vital nodes vertex cover) problem consists of determining a set of k vertices whose removal results in the greatest decrease in the maximum weight of independent sets (minimum weight of vertex covers, respectively). We also consider the complementary problems, minimum node blocker independent set (minimum node blocker vertex cover) that consists of removing a subset of vertices of minimum size such that the maximum weight of independent sets (minimum weight of vertex covers, respectively) in the remaining graph is at most a specified value. We show that these problems are NP-hard on bipartite graphs but polynomial-time solvable on unweighted bipartite graphs. Furthermore, these problems are polynomial also on cographs and graphs of bounded treewidth. Results on the non-existence of ptas are presented, too.  相似文献   

11.
The k-domination problem is to select a minimum cardinality vertex set D of a graph G such that every vertex of G is within distance k from some vertex of D. We consider a generalization of the k-domination problem, called the R-domination problem. A linear algorithm is presented that solves this problem for block graphs. Our algorithm is a generalization of Slater's algorithm [12], which is applicable for forest graphs.  相似文献   

12.
We study combinatorial and algorithmic questions around minimal feedback vertex sets (FVS) in tournament graphs. On the combinatorial side, we derive upper and lower bounds on the maximum number of minimal FVSs in an n‐vertex tournament. We prove that every tournament on n vertices has at most 1.6740n minimal FVSs, and that there is an infinite family of tournaments, all having at least 1.5448n minimal FVSs. This improves and extends the bounds of Moon (1971). On the algorithmic side, we design the first polynomial space algorithm that enumerates the minimal FVSs of a tournament with polynomial delay. The combination of our results yields the fastest known algorithm for finding a minimum‐sized FVS in a tournament.  相似文献   

13.
The Turán bound (Turán (1941) [17]) is a famous result in graph theory, which relates the independence number of an undirected graph to its edge density. Also the Caro-Wei inequality (Caro (1979) [4] and Wei (1981) [18]), which gives a more refined bound in terms of the vertex degree sequence of a graph, might be regarded today as a classical result. We show how these statements can be generalized to directed graphs, thus yielding a bound on directed feedback vertex number in terms of vertex out-degrees and in terms of average out-degree, respectively.  相似文献   

14.
We study some structural properties for tree-decompositions of 2-connected planar graphs that we use to improve upon the runtime of tree-decomposition based dynamic programming approaches for several NP-hard planar graph problems. E.g., we derive the fastest algorithm for Planar Dominating Set of runtime 3twnO(1), when we take the width tw of a given tree-decomposition as the measure for the exponential worst case behavior. We also introduce a tree-decomposition based approach to solve non-local problems efficiently, such as Planar Hamiltonian Cycle in runtime 6twnO(1). From any input tree-decomposition of a 2-connected planar graph, one computes in time O(nm) a tree-decomposition with geometric properties, which decomposes the plane into disks, and where the graph separators form Jordan curves in the plane.  相似文献   

15.
Given an undirected graph and a weighting function defined on the vertex set, the minimum weight vertex cover problem is to find a vertex subset whose total weight is minimum subject to the premise that the selected vertices cover all edges in the graph. In this paper, we introduce a meta-heuristic based upon the Ant Colony Optimization (ACO) approach, to find approximate solutions to the minimum weight vertex cover problem. In the literature, the ACO approach has been successfully applied to several well-known combinatorial optimization problems whose solutions might be in the form of paths on the associated graphs. A solution to the minimum weight vertex cover problem however needs not to constitute a path. The ACO algorithm proposed in this paper incorporates several new features so as to select vertices out of the vertex set whereas the total weight can be minimized as much as possible. Computational experiments are designed and conducted to study the performance of our proposed approach. Numerical results evince that the ACO algorithm demonstrates significant effectiveness and robustness in solving the minimum weight vertex cover problem.  相似文献   

16.
The paper studies crown reductions for the Minimum Weighted Vertex Cover problem introduced recently in the unweighted case by Fellows et al. [Blow-Ups, Win/Win's and crown rules: some new directions in FPT, in: Proceedings of the 29th International Workshop on Graph Theoretic Concepts in Computer Science (WG’03), Lecture notes in computer science, vol. 2880, 2003, pp. 1-12, Kernelization algorithms for the vertex cover problem: theory and experiments, in: Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX), New Orleans, Louisiana, January 2004, pp. 62-69]. We describe in detail a close relation of crown reductions to Nemhauser and Trotter reductions that are based on the linear programming relaxation of the problem. We introduce and study the so-called strong crown reductions, suitable for finding (or counting) all minimum vertex covers, or finding a minimum vertex cover under some additional constraints. It is described how crown decompositions and strong crown decompositions suitable for such problems can be computed in polynomial time. For weighted König-Egerváry graphs (G,w) we observe that the set of vertices belonging to all minimum vertex covers, and the set of vertices belonging to no minimum vertex covers, can be efficiently computed.Further, for some specific classes of graphs, simple algorithms for the MIN-VC problem with a constant approximation factor r<2 are provided. On the other hand, we conclude that for the regular graphs, or for the Hamiltonian connected graphs, the problem is as hard to approximate as for general graphs.It is demonstrated how the results about strong crown reductions can be used to achieve a linear size problem kernel for some related vertex cover problems.  相似文献   

17.
A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that the maximum dissociation set problem is NP-hard for planar line graphs of planar bipartite graphs. In addition, we describe several polynomially solvable cases for the problem under consideration. One of them deals with the subclass of the so-called chair-free graphs. Furthermore, the related problem of finding a maximal (by inclusion) dissociation set of minimum size in a given graph is studied, and NP-hardness results for this problem, namely for weakly chordal and bipartite graphs, are derived. Finally, we provide inapproximability results for the dissociation set problems mentioned above.  相似文献   

18.
Mobile guards on the vertices of a graph are used to defend it against an infinite sequence of attacks on either its vertices or its edges. If attacks occur at vertices, this is known at the eternal domination problem. If attacks occur at edges, this is known as the eternal vertex cover problem. We focus on the model in which all guards can move to neighboring vertices in response to an attack. Motivated by the question of which graphs have equal eternal vertex cover and eternal domination numbers, a number of results are presented; one of the main results of the paper is that the eternal vertex cover number is greater than the eternal domination number (in the all-guards move model) in all graphs of minimum degree at least two.  相似文献   

19.
The 2-step domination problem is to find a minimum vertex set D of a graph such that every vertex of the graph is either in D or at distance two from some vertex of D.In the present paper,by using a labeling method,we provide an O(m) time algorithm to solve the2-step domination problem on block graphs,a superclass of trees.  相似文献   

20.
设G=(V,A)是一个有向图,其中V和A分别表示有向图G的点集和弧集.对集合TV(G),如果对于任意点v∈V(G)\T,都存在点u,w∈T(u,w可能是同一点)使得(u,v),(v,w)∈A(G),则称T是G的一个双向控制集.有向图G的双向控制数γ~*(G)是G的最小双向控制集所含点的数目.提出了广义de Bruijn和Kautz有向图的双向控制数的新上界,改进了以前文献中提出的相关结论.此外,对某些特殊的广义de Bruijn和Kautz有向图,通过构造其双向控制集,进一步改进了它们双向控制数的上、下界.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号