首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The kinetics of the fluoride-induced decomposition of the thermally stable silyloxyaryl-substituted spiroadamantyl dioxetanes 1a,b and the excited state formation of this chemically initiated electron exchange luminescence (CIEEL) have been investigated. Two limiting kinetic regimes flash and glow have been identified, which depend on the fluoride concentration, the first at high, the second at low [F-] triggering, whose detailed kinetic analysis affords the rate constants for the deprotected dioxetanes 2a,b cleavage in acetonitrile and dimethyl sulfoxide and chemiluminescence measurements the CIEEL and phen-olate 4 (CIEEL emitter) excitation yields. Chloro-substi-tution in the spiroadamantyl dioxetane does not affect the deprotection step k 2 but leads to a ca five-fold faster cleavage of the deprotected dioxetane 2, while the chemiexcitation yield is the same for both dioxetanes. The energies of the first excited singlet and triplet states of the emitting phenolate 4 were estimated by AM1 configuration interaction calculations with explicit consideration of acetonitrile as solvent (self-consistent reaction field approach). The first excited singlet and triplet state of the CIEEL emitter phenolate 4 possess π,π* character, as suggested by the π-type molecular orbitals and the large singlet-triplet energy gap. The chemiexcitation of both singlet and triplet states of the excited phenolate 4 is feasible during the dioxetanes 1a,b cleavage, but the experimentally determined high singlet excitation yields suggest that preferentially the phenolate 4 singlet state is populated in the fluoride ion-triggered CIEEL process.  相似文献   

2.
The P-type delayed fluorescence (DF) Si→So of aromatic compounds results from the population of excited singlet states Si by triplet—triplet annihillation (TTA) of molecules in their lowest and metastable triplet state T1 : T1 + T1
Si + So; Si may be any excited singlet state whose excitation energy E(Si ? 2 E(T1). TTA of unlike molecules A and B (hetero-TTA) may lead to excited singlet states either of A or of B. In particular, if E(TA1) < E(T1B), hetero-TTA may lead to excited singlet states SkA which are not accessible by TTA of 2 T1A. In the present paper we report the first example of the detection of the DF from a very short-lived upper excited singlet state SkA which has been populated by hetero-TTA. The systems investigated are liquid solutions of A = anthracene-h10 or anthracene-d10 or 9,10-dimethylanthracene and B = xanthone in 1,1,2-trichlorotrifluoroethane at 243 K. SkA is the lowest 1B3U+ state (Bb state) of anthracene.  相似文献   

3.
Abstract— The decay of the indole triplet of single tryptophan-containing proteins and model compounds can be readily measured at room temperature in aqueous solution by monitoring the triplet-triplet absorption or phosphorescence emission following a 265 nm exciting laser pulse. The quenching action of acrylamide on the triplet excited state of indole side chains was studied in an analogous fashion to that previously done at the singlet level (Eftink and Ghiron, 1977). The acrylamide triplet quenching constant (tkq) ranged from a high of 7.8 times 108M-1 s-1 for the exterior indole of corticotropin (ACTH) to a low of 2 times 105 Af-1 s-1 for the interior indole of ribonuclease T, (RNase T,). The ratio (7) of these values with their respective acrylamide singlet quenching constants (tkq),(γ=tkq8Kq) ranged from a high of 0.22 for ACTH to a low of 0.001 for RNase T1,. Acrylamide is also an inefficient quencher of model indoles in various solvents (i.e. it has a γ less than 1). The magnitude of γ varied from a high of 0.3 in H20 to a low of 0.02 in acetonitrile, but did not correlate with viscosity, dielectric constant or polarity. The lower efficiency observed for internal indole groups can not be explained by that class of models which predict the presence of static quenching at the triplet level, since none was observed. The present results confirm the observation of Calhoun et al. of a large discrepancy between acrylamide's singlet and triplet quenching constants for buried indole side chains, but suggest that it may be largely explained by the fact that acrylamide is an inefficient quencher of the indole triplet state (1983). The magnitude of this inefficiency is probably determined by specific microenvironmental factors. Thus, unlike 8Kq, the environmentally sensitive lkH cannot be easily used to characterize the dynamics of proteins.  相似文献   

4.
Abstract— The lowest excited singlet-state dissociation constants (pKSa) of bromosubstituted pyridines, quinolines, and isoquinolines were determined from the pH-dependent shifts in their electronic absorption spectra. The lowest excited triplet-state dissociation constants (pKTa) of bromosubstituted quinolines and 4-bromoisoquinoline were obtained from the shifts of the 0–0 phosphorescence bands measured in rigid aqueous solution at 77 K. The pKSa values indicate that the basicity of these brominated nitrogen heterocycles is increased in the lowest excited singlet state by 2 to 10 orders of magnitude as compared with the ground state. The pKTa values are found to be significantly different from the corresponding ground-state pKa values, indicating that the basicity of bromoquinolines is increased in the lowest excited triplet state by 1.7 to 3.0 pK units. The enhancement of the excited singlet-and triplet-state basicity of brominated nitrogen heterocycle derivatives as compared with the unsuhstituted parent compounds is attributed to the increased electron-donor conjugative interactions of the bromine atom pπ orbitals with π orbitals in the lowest excited singlet and triplet state.  相似文献   

5.
Spectral and kinetic characteristics of luminescence of the Eu3+ complex EuTTA3Phen (where TTA is thenoyltrifluoroacetone and Phen is 1,10-phenanthroline) and the triplet state 3TTA of the nonluminescent complex GdTTA3 Phen, as well as mixtures of these complexes, have been studied in a CH2Cl2 solution, in finely porous glass (PG) filled with the solution, in a CH2Cl2 monolayer on the PG surface, and in the adsorbed state on the dry PG surface. The yields of Eu3+ luminescence and 3TTA for mixtures of the complexes in a solution, including the solution located in PG, correspond to those expected from the portion of the absorbed light. However, in the monolayer and on a dry PG surface, the luminescence yield observed is substantially higher and the 3TTA yield is lower than those expected, which is due to static energy transfer from the triplet states of TTA in the complex with Gd3+ to TTA in the complex with Eu3+ in mixed clusters of the complexes on the surface.  相似文献   

6.
The naphthalene-sensitized formation of triplet excited chlorophyll-a (Chl-a) and all-transß-carotene has been studied by pulse radiolysis. The rate constants for transfer of triplet energy from naphthalene to Chl-a and all-transß-carotene in benzene at 25°C are (3.6 ± 0.6)·109M-1 s-1 and (10.7 ± 1.2)·109M-1 s-1, respectively. The decays of the excited triplet states of naphthalene, Chl-a and all-transß-carotene all follow a mixed first-and second-order mechanism. The first-order rate constant for triplet decay is strongly dose dependent for naphthalene but only slightly dependent and independent of dose for Chl-a and all-transß-carotene, respectively. The rate constants for triplet-triplet annihilation are (1.4 ± 0.3)·109M-1 s-1 for Chl-a and (3.6 ± 0.4)·109M-1 s-1 for all-transß carotene. The nearly constant ratio k(ß-carotene)/k(Chl-a) for the bimolecular triplet energy transfer rate constants is discussed in terms of the molecular shapes of the two molecules. The energetics of the triplet-triplet annihilation of all-transß-carotene are discussed, and it is proposed that production of the excited 1AB state may be a major route in the annihilation process.  相似文献   

7.
We prepared a N^N Pt(II) bisacetylide complex that has strong absorption of visible light (molar absorption coefficients ϵ=6.7×104 M−1 cm−1 at 570 nm), and the singlet oxygen quantum yield (ΦΔ) is up to 78 %. Femtosecond transient absorption spectra show the intersystem crossing (ISC) of the complex takes 81.8 ps, nanosecond transient absorption spectra show the triplet excited state lifetime is 7.6 μs. Density functional theory (DFT) computation demonstrated that the S1 and T1 states are mainly localized on the perylenemonoimide (PMI) ligands, although the involvement of the Pt(II) centre is noticeable. The complex was used as triplet photosensitizer to generate delayed fluorescence with perylenebisimide (PBI) as the triplet state energy acceptor and emitter, via the intermolecular triplet-triplet energy transfer (TTET) and triplet-triplet annihilation (TTA), the delayed fluorescence lifetime is up to 52.5 μs under the experimental conditions.  相似文献   

8.
Optic—acoustic measurements have been employed in the determination of absolute quantum yields for benzene and naphthalene. Heat yields are measured by a method using oxygen quenching of both triplet and singlet states. For vibrationally relaxed excited singlet states the fluorescence quantum yields, φBf, are 0.16 ± 0.02 and 0.79 ± 0.02 for benzene and naphthalene respectively. For 0.07 torr naphthalene at room temperature with 248 nm excitation, φf = 0.35 ± 0.03 and the quantum yield of internal conversion is less than 0.05. The decay of the highly vibrationally excited triplet state is dominated by vibrational relaxation for 0.07 torr naphthalene, but for benzene, even at high pressures, strong competition comes from an indirect coupling process to the ground state.  相似文献   

9.
A series of IrIII complexes, based on 1,10‐phenanthroline featuring aryl acetylene chromophores, were prepared and investigated as triplet photosensitizers. The complexes were synthesized by Sonogashira cross‐coupling reactions using a “chemistry‐on‐the‐complex” method. The absorption properties and luminescence lifetimes were successfully tuned by controlling the number and type of light‐harvesting group. Intense UV/Vis absorption was observed for the IrIII complexes with two light‐harvesting groups at the 3‐ and 8‐positions of the phenanthroline. The asymmetric IrIII complex (with a triphenylamine (TPA) and a pyrene moiety attached) exhibited the longest lifetime. Red emission was observed for all the complexes in deaerated solutions at room temperature. Their emission at low temperature (77 K) and nanosecond time‐resolved transient difference absorption spectra revealed the origin of their triplet excited states. The singlet‐oxygen (1O2) sensitization and triplet‐triplet annihilation (TTA)‐based upconversion were explored. Highly efficient TTA upconversion (ΦUC=28.1 %) and 1O2 sensitization (ΦΔ=97.0 %) were achieved for the asymmetric IrIII complex, which showed intense absorption in the visible region (λabs=482 nm, ?=50900 m ?1 cm?1) and had a long‐lived triplet excited state (53.3 μs at RT).  相似文献   

10.
Abstract— The energies of the lowest excited singlet, Es, and triplet, Et, states, and singlet-triplet splitting energies, ΔEs,t, were determined on 18 carcinogenic and 31 noncarcinogenic polycyclic aromatics. A highly significant correlation was found between carcinogenic activity and the energy of the excited singlet state. Compounds with an Es < 312 kJ/mol were 4.8 times more likely to be carcinogens than those compounds with Es 312 kJ/mol (P= 0.015). Compounds whose singlet energies fell within the narrow range of 297 ≤Es≤ 310 kJ/mol were 22.8 times more likely to be carcinogens than those compounds which fell outside this range (P= 0.00006). A significant correlation between carcinogenic activity and Et energies was not found, while the correlation involving ΔEs,t energies was intermediate between the Es and Et correlations. The phosphorescence lifetimes, τp, of the 18 carcinogenic aromatics and 27 of the noncarcinogenic aromatip were determined, and were shown not to be correlated with carcinogenic activity. When either the Et or ΔEs,t energies were plotted as a function of Es it was found that the carcinogens tended to form in an elliptical cluster. Compounds whose Es and Et energies placed them within the ellipse were 9.7 times more likely to be carcinogens than those compounds which fell outside the ellipse (P= 0.002), while with the Es, ΔEs,t ellipse, compounds which fell inside were 20.6 times more likely to be carcinogens than those which fell outside (P= 0.0004). Es, Et, ΔEs,t and τp values were also determined on 12 carcinogenic and 4 noncarcinogenic alkyl substituted benz[a]anthracenes. There was no significant difference between the carcinogens and noncarcinogens and the “elliptical” correlation predicted both the carcinogens and noncarcinogens to be carcinogenic. The results suggest that either some property(ies) of the lowest excited singlet state, but not its energy, or some molecular property(ies) which runs parallel to singlet state energies may be important in determining carcinogenic activity in polycyclic aromatics.  相似文献   

11.
Metal-to-ligand charge-transfer sensitized upconverted fluorescence in noncovalent triplet energy transfer assemblies is investigated using Ir(ppy)3 as the sensitizer (ppy=2-phenylpyridine) and pyrene or 3,8-di-tert-butylpyrene as the triplet acceptor/annihilator. Upconverted singlet fluorescence from pyrene or 3,8-di-tert-butylpyrene resulting from triplet-triplet annihilation (TTA) is observed following selective excitation of Ir(ppy)3 in deaerated dichloromethane solutions using 450-nm laser pulses. In both systems, the TTA process is confirmed by the near quadratic dependence of the upconverted fluorescence intensity on incident light power, measured by integrating the upconverted delayed fluorescence kinetic traces as a function of incident excitation power. At the relatively high concentrations of pyrene that were utilized, pyrene excimer formation was detected by its characteristic broad emission centered near 470 nm. In essence, selective excitation of Ir(ppy)3 ultimately resulted in the simultaneous sensitization of both singlet pyrene and pyrene excimers, and the latter degrades the energy stored in the pyrene singlet excited state. Furthermore, in the case of di-tert-butylpyrene/Ir(ppy)3, the formation of excimers is successfully blocked because of the presence of the sterically hindering tert-butyl groups. The current work demonstrates that sensitized TTA is indeed accessible to chromophore systems beyond those previously reported, suggesting the generality of the approach.  相似文献   

12.
Extensive time-dependent DFT (TDDFT) and DFT/multireference configuration interaction (MRCI) calculations are performed on the singlet and triplet excited states of free-base porphyrin, with emphasis on intersystem crossing processes. The equilibrium geometries, as well as the vertical and adiabatic excitation energies of the lowest singlet and triplet excited states are determined. Single and double proton-transfer reactions in the first excited singlet state are explored. Harmonic vibrational frequencies are calculated at the equilibrium geometries of the ground state and of the lowest singlet and triplet excited states. Furthermore, spin–orbit coupling matrix elements of the lowest singlet and triplet states and their numerical derivatives with respect to nuclear displacements are computed. It is shown that opening of an unprotonated pyrrole ring as well as excited-state single and double proton transfer inside the porphyrin cavity lead to crossings of the potential energy curves of the lowest singlet and triplet excited states. It is also found that displacements along out-of-plane normal modes of the first excited singlet state cause a significant increase of the 2|Hso|S1>, 1|Hso|S1>, and 1|Hso|S0> spin–orbit coupling matrix elements. These phenomena lead to efficient radiationless deactivation of the lowest excited states of free-base porphyrin via intercombination conversion. In particular, the S1→T1 population transfer is found to proceed at a rate of ≈107 s−1 in the isolated molecule.  相似文献   

13.
The photophysical properties of benzoporphyrin derivative monoacid ring A (BPD-MA), a second-generation photosensitizer currently in phase II clinical trials, were investigated in homogeneous solution. Absorption, fluorescence, triplet-state, singlet oxygen (O2(1Δg)) sensitization studies and photobleaching experiments are reported. The ground state of this chlorin-type molecule shows a strong absorbance in the red (λ≈ 688 nm, ?≈ 33 000 M?1 cm?1 in organic solvents). For the singlet excited state the following data were determined in methanol: energy level, Es= 42.1 kcal mol?1, lifetime, Φf= 5.2 ns and fluorescence quantum yield, Φf= 0.05 in air-saturated solution. The triplet state of BPD-MA has a lifetime, τf >. 25 ns, an energy level, ET= 26.9 kcal mol?1 and the molar absorption coefficient is ?T= 26 650 M?1 cm?1 at 720 nm. A dramatic effect of oxygen on the fluorescence (φf) and intersystem crossing (φT) quantum yields has been observed. The BPD-MA presents rather high triplet (φT= 0.68 under N2-saturated conditions) and singlet oxygen (φΔ= 0.78) quantum yields. On the other hand, the presence of oxygen does not significantly modify the photobleaching of this photostable compound, the photodegradation quantum yield (φPb) of which was found to be on the order of 5 × 10?5 in organic solvents.  相似文献   

14.
A quantitative, computer processed spectroscopic study, using photon counting, on the first excited triplet and singlet states of dilute isotopic mixed crystals of naphthalene at 2 K is presented for C10H8; 1-DC10H7; 2-DC10H7; 1,4-D2C10H6; 1,4,5-D3C10H5; 1,4,5,8-D4C10H4; 1,2,4,5,8-D5C10H3; a β-D4C10H4 and a β2-D6C10H2 as guests in C10D8 host crystals (and, for comparison, also for the same guests in a durene host crystal). The guest—host relative polarization Rashba formula has been verified quantitatively, and, as an added bonus, the elusive polarization ratio of the pure naphthalene crystal singlet Davydov components has been found to be 80 ± 20 (b/a), which is in poor agreement with the transition octupole—transition octupole model. The experimental guest energies and their concomitant quasiresonance shifts for bound singlet states (as well as the occurrences of unbound states) are in excellent quantitative agreement (about 1 cm?1) with those calculated using a Green's function formalism based on the ideal mixed crystal approximation and on a restricted Frenkel type dispersion relation derived from resonance pairs. The same Green's function also accounts quantitatively (within 10%) for the guest singlet state exciton localizations (guest excitation amplitudes). The triplet exciton state reveals an orientational site splitting (about 0.7 cm?1) for the 0—0 transition of the I-DC10H7 guest in C10D8 host. The order of the α and β substituted deuteronaphthalenes in the triplet state is reversed from that of the singlet state. The last two observations are related to the different nature of the lowest Π-Π* singlet and triplet states of naphthalene.  相似文献   

15.
Acetylene‐linked reactive intermediates of (nitrenoethynyl)‐X‐methylenes, (nitrenoethynyl)‐X‐silylenes, and (nitrenoethynyl)‐X‐germylenes are almost experimentally unreachable (X–M–C≡C–N; X=H ( 1 ), CN ( 2 ), OH ( 3 ), NH2 ( 4 ), NO2 ( 5 ), and CHO ( 6 ); M=C, Si, and Ge). The effects of the electron‐donating and electron withdrawing groups were compared and contrasted at seven levels of theory. All singlet species as ground states with one local open‐shell singlet carbene subunit (π1π1) and another local open‐shell singlet nitrene subunit (π1π1) were found to be more stable than their corresponding triplets including one local open‐shell singlet carbene (δ1π1) (or one local closed‐shell singlet carbene [δ2π0]) and another local triplet nitrene subunit (π1π1) with 45.94–77.996 kcal/mol singlet–triplet energy gap (ΔEs‐t). Their relative silylenes and germylenes made reduction of ΔEs‐t, so the triplet ground states were found for species 3 Si , 4 Si , 5 Si , 2 Ge , 3 Ge , 4 Ge , and 5 Ge . All the singlet silylenes/germylenes formed by one local closed‐shell singlet silylenes/germylenes (δ2π0) and one local closed‐shell singlet nitrene subunit (π2π0). Also, one local closed‐shell singlet silylene/germylene subunit (δ2π0) and one local triplet nitrene subunit (π1π1) were observed for triplet silylenes/germylenes. The singlet and triplet species 3 Si , 4 Si , 3 Ge , and 4 Ge , due to their electrophilic (Si4/Ge4) and nucleophilic (X5) centers, could be identified as intermediates in chemical reactions.  相似文献   

16.
While many studies have been done on triplet–triplet annihilation‐based photon upconversion (TTA‐UC) to produce visible light with high efficiency, the efficient TTA‐UC from visible to UV light, despite its importance for a variety of solar and indoor applications, remains a challenging task. Here, we report the highest visible‐to‐UV TTA‐UC efficiency of 20.5 % based on the discovery of an excellent UV emitter, 1,4‐bis((triisopropylsilyl)ethynyl)naphthalene (TIPS‐Nph). TIPS‐Nph is an acceptor with desirable features of high fluorescence quantum yield and high singlet generation efficiency by TTA. TIPS‐Nph has a low enough triplet energy level to be sensitized by Ir(C6)2(acac), a superior donor that does not quench UV emission. The combination of TIPS‐Nph and Ir(C6)2(acac) realizes the efficient UV light production even with weak light sources such as an AM 1.5 solar simulator and room LEDs.  相似文献   

17.
Three substituted tetraazaporphyrins, octa-(4-tert-butylphenyl)-tetrapyrazinoporphyrazine, tetra-(4-tert-butyl)phthalocyanine and tetra-(4-tert-butyi)phthalocyanatomagnesium (t4-PcMg), were spectroscopically checked in solutions and liposomes with respect to suitability as potential sensitizers of a possible new start mechanism for photodynamic therapy (PDT) from a stepwise excited higher singlet state. This PDT start mechanism was recently proposed to overcome the problem of O2 (1δ2)-caused cutaneous phototoxicity in PDT. By means of absorption and fluorescence measurements as well as nonlinear absorption investigation, transient spectroscopy and lasing experiments, compound t4-PcMg was found to have the most appropriate properties: Based on a high fluorescence quantum yield (φfi= 0.84) and a very low crossing to the triplet (φisc= 0.05), two higher excited states can be effectively populated both by two stepwise absorption transitions at 674 nm and consecutive absorption transitions at 674 and 710 nm. Moreover, t4-PcMg incorporates into liposomes very well with spectroscopic properties similar to those in solution.  相似文献   

18.
Energy differences, ΔX s−t (X = E, H, and G) (ΔX s−t = X(singlet) − X(triplet)) between singlet (s) and triplet (t) states of C12H8M were calculated at B3LYP/6-311+G*. The DFT calculations indicated that the ΔG s−t between singlet (s) and triplet (t) states of C12H8M were increased from M = C to M = Pb. The ΔG s−t of C12H8M was compared with its analogue C4H4M through replacement of heavy atoms from M = C to M = Pb. Configurations of the electrons in orbitals (σ2 or π2) for the singlet state of C12H8M were discussed.  相似文献   

19.
Nowadays, blue fluorescent organic light-emitting diodes (FOLEDs) have attracted considerable attention from both academia and industry. According to spin statistics, electrical excitation results in the formation of ∼25% singlet excitons and ∼75% triplet excitons (signifying ~75% energy loss), which triggered wide-ranging efforts to harvest as many triplet excitons as possible. The materials that can convert triplet excitons into singlet excitons from the high-lying excited triplet states (referred as “hot exciton” channel) to realize high efficiency were reported, which can also efficaciously avoid the accumulation of triplet excitons in T1 state. In this study, by means of density functional theory (DFT) and time-dependent DFT, we have theoretically investigated the electronic and photophysical properties of 16 newly designed molecules with donor-bridge-acceptor framework to search for the blue FOLED materials exploiting the “hot exciton” path. Important properties, such as singlet-triplet energy gaps, absorption and emission parameters, and reverse intersystem crossing rates (kRISC), of five target molecules were studied. The calculated results demonstrate that thiophene-diphenylamine (kRISC up to 1.03 × 108 seconds−1) may have promising potential as blue FOLED materials by virtue of the “hot exciton” effect.  相似文献   

20.
Irradiation of 1-(3,4-dioxopentyl)uracil (UPD) and 1-(3.4-dioxopentyl)thymine (TPD) in acetonitrile solution at 25°C, at the wavelength (280 nm) where only the pyrimidine absorbs the light, sensitizes both fluorescence and phosphorescence of the diketone chromophore in the sidechain. From comparison of the intensity in the corrected excitation spectra with the absorption spectra in acetonitrile solution, it was estimated that the yield of singlet energy transfer in UPD was 0.17 and in TPD was 0.44. It was also observed that the ratio of phosphorescence to fluorescence was greater in the sensitized emission than in that from direct excitation of the diketone chromophore. The yield of triplet energy transfer thus measured corresponds to minimum values for the yields of intersystem crossing from singlet excited state to triplet excited state of 0.075 in the uracil chromophore of UPD and of 0.14 in the thymine chromophore of TPD. These are in agreement with other recent values for these quantities. The value of this type of system as an intramolecular triplet counter is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号