首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Optimal control simulation is used to examine the control mechanisms in the photodissociation of phenol within a two-dimensional, three-electronic-state model with two conical intersections. This model has two channels for H-atom elimination, which correspond to the (2)pi and (2)sigma states of the phenoxyl radical. The optimal pulse that enhances (2)sigma dissociation initially generates a wave packet on the S(1) potential-energy surface of phenol. This wave packet is bifurcated at the S(2)-S(1) conical intersection into two components with opposite phases because of the geometric phase effect. The destructive interference caused by the geometric phase effect reduces the population around the S(1)-S(0) conical intersection, which in turn suppresses nonadiabatic transitions and thus enhances dissociation to the (2)sigma limit. The optimal pulse that enhances S(0) dissociation, on the other hand, creates a wave packet on the S(2) potential-energy surface of phenol via an intensity borrowing mechanism, thus avoiding geometric phase effects at the S(2)-S(1) conical intersection. This wave packet hits the S(1)-S(0) conical intersection directly, resulting in preferred dissociation to the (2)pi limit. The optimal pulse that initially prepares the wave packet on the S(1) potential-energy surface (PES) has a higher carrier frequency than the pulse that prepares the wave packet on the S(2) PES. This counterintuitive effect is explained by the energy-level structure and the S(2)-S(1) vibronic coupling mechanism.  相似文献   

2.
Laser control schemes of reactions of photoswitching functional molecules are proposed based on the quantum mechanical wave-packet dynamics and the design of laser parameters. The appropriately designed quadratically chirped laser pulses can achieve nearly complete transitions of wave packet among electronic states. The laser parameters can be optimized by using the Zhu-Nakamura theory of nonadiabatic transition. This method is effective not only for the initial photoexcitation process but also for the pump and dump scheme in the middle of the overall photoswitching process. The effects of momentum of the wave packet crossing a conical intersection on the branching ratio of products have also been clarified. These control schemes mentioned above are successfully applied to the cyclohexadiene/hexatriene photoisomerization (ring-opening) process which is the reaction center of practical photoswitching molecules such as diarylethenes. The overall efficiency of the ring opening can be appreciably increased by using the appropriately designed laser pulses compared to that of the natural photoisomerization without any control schemes.  相似文献   

3.
We have previously shown how femtosecond angle- and energy-resolved photoelectron spectroscopy can be used to monitor quantum wavepacket bifurcation at an avoided crossing or conical intersection and also how a symmetry-allowed conical intersection can be effectively morphed into an avoided crossing by photo-induced symmetry breaking. The latter result suggests that varying the parameters of a laser to modify a conical intersection might control the rate of passage of wavepackets through such regions, providing a gating process for different chemical products. In this paper, we show with full quantum mechanical calculations that such optical control of conical intersections can actually be monitored in real time with femtosecond angle- and energy-resolved photoelectron spectroscopy. In turn, this suggests that one can optimally control the gating process at a conical intersection by monitoring the photoelectron velocity map images, which should provide far more efficient and rapid optimal control than measuring the ratio of products. To demonstrate the sensitivity of time-resolved photoelectron spectra for detecting the consequences of such optical control, as well as for monitoring how the wavepacket bifurcation is affected by the control, we report results for quantum wavepackets going through the region of the symmetry-allowed conical intersection between the first two (2)A' states of NO(2) that is transformed to an avoided crossing. Geometry- and energy-dependent photoionization matrix elements are explicitly incorporated in these studies. Time-resolved photoelectron angular distributions and photoelectron images are seen to systematically reflect the effects of the control pulse.  相似文献   

4.
A linearized optimal control method in combination with mixed quantum/classical molecular dynamics simulation is used for numerically investigating the possibility of controlling photodissociation wave packets of I(2)(-) in water. Optimal pulses are designed using an ensemble of photodissociation samples, aiming at the creation of localized dissociation wave packets. Numerical results clearly show the effectiveness of the control although the control achievement is reduced with an increase in the internuclear distance associated with a target region. We introduce effective optimal pulses that are designed using a statistically averaged effective dissociation potential, and show that they semiquantitatively reproduce the control achievements calculated by using optimal pulses. The control mechanisms are interpreted from the time- and frequency-resolved spectra of the effective optimal pulses.  相似文献   

5.
Truhlar DG  Mead CA 《Physical chemistry chemical physics : PCCP》2011,13(10):4754-5; author reply 4756-8
A recent paper in this journal proposed the conversion of conical intersections to avoided crossings by lowering the symmetry with an optical field. The article also claimed that the characters of nonadiabatic transitions caused by avoided crossings and conical intersections are qualitatively different. The present comment shows that this proposal and this claim result from an incorrect appreciation of the nature of conical intersections and avoided crossings. Conical intersections are moved, not removed, by almost all perturbations. Furthermore, there is no dichotomy between avoided crossing mechanisms and conical intersection mechanisms; as the parameters of the problem change and the typical locally avoided crossing involved in nonadiabatic dynamics becomes farther from the conical intersection, there is a gradual shift in the nature of the nonadiabatic transitions, with a continuum of possible behaviors, not just two.  相似文献   

6.
The photoinduced hydrogen elimination reaction in phenol via the conical intersections of the dissociative 1pi sigma* state with the 1pi pi* state and the electronic ground state has been investigated by time-dependent quantum wave-packet calculations. A model including three intersecting electronic potential-energy surfaces (S0, 1pi sigma*, and 1pi pi*) and two nuclear degrees of freedom (OH stretching and OH torsion) has been constructed on the basis of accurate ab initio multireference electronic-structure data. The electronic population transfer processes at the conical intersections, the branching ratio between the two dissociation channels, and their dependence on the initial vibrational levels have been investigated by photoexciting phenol from different vibrational levels of its ground electronic state. The nonadiabatic transitions between the excited states and the ground state occur on a time scale of a few tens of femtoseconds if the 1pi pi*-1pi sigma* conical intersection is directly accessible, which requires the excitation of at least one quantum of the OH stretching mode in the 1pi pi* state. It is shown that the node structure, which is imposed on the nuclear wave packet by the initial preparation as well as by the transition through the first conical intersection (1pi pi*-1pi sigma*), has a profound effect on the nonadiabatic dynamics at the second conical intersection (1pi sigma*-S0). These findings suggest that laser control of the photodissociation of phenol via IR mode-specific excitation of vibrational levels in the electronic ground state should be possible.  相似文献   

7.
The ab initio nanoreactor has previously been introduced to automate reaction discovery for ground state chemistry. In this work, we present the nonadiabatic nanoreactor, an analogous framework for excited state reaction discovery. We automate the study of nonadiabatic decay mechanisms of molecules by probing the intersection seam between adiabatic electronic states with hyper-real metadynamics, sampling the branching plane for relevant conical intersections, and performing seam-constrained path searches. We illustrate the effectiveness of the nonadiabatic nanoreactor by applying it to benzene, a molecule with rich photochemistry and a wide array of photochemical products. Our study confirms the existence of several types of S0/S1 and S1/S2 conical intersections which mediate access to a variety of ground state stationary points. We elucidate the connections between conical intersection energy/topography and the resulting photoproduct distribution, which changes smoothly along seam space segments. The exploration is performed with minimal user input, and the protocol requires no previous knowledge of the photochemical behavior of a target molecule. We demonstrate that the nonadiabatic nanoreactor is a valuable tool for the automated exploration of photochemical reactions and their mechanisms.

The nonadiabatic nanoreactor is a tool for automated photochemical reaction discovery that extensively explores intersection seams and links conical intersections to photoproduct distributions.  相似文献   

8.
The relation between the hydrogen atom transfer (HAT) and proton-coupled electron transfer (PCET) mechanisms is discussed and is illustrated by multiconfigurational electronic structure calculations on the ArOH + R(*) --> ArO(*) + RH reactions. The key topographic features of the Born-Oppenheimer potential energy surfaces that determine the predominant reaction mechanism are the conical intersection seam of the two lowest states and reaction saddle points located on the shoulders of this seam. The saddle point corresponds to a crossing of two interacting valence bond states corresponding to the reactant and product bonding patterns, and the conical intersection corresponds to the noninteracting intersection of the same two diabatic states. The locations of mechanistically relevant conical intersection structures and relevant saddle point structures are presented for the reactions between phenol and the N- and O-centered radicals, (*)NH2 and (*)OOCH3. Points on the conical intersection of the ground doublet D0 and first excited doublet D1 states are found to be in close geometric and energetic proximity to the reaction saddle points. In such systems, either the HAT mechanism or both the HAT mechanism and the proton-coupled electron transfer (PCET) mechanism can take place, depending on the relative energetic accessibility of the reaction saddle points and the D0/D1 conical intersection seams. The discussion shows how the two mechanisms are related and how they blend into each other along intermediate reaction paths. The recognition that the saddle point governing the HAT mechanism is on the shoulder of the conical intersection governing the PCET mechanism is used to provide a unified view of the competition between the two mechanisms (and the blending of the two mechanisms) in terms of the prominent and connected features of the potential energy surface, namely the saddle point and the conical intersection. The character of the dual mechanism may be understood in terms of the dominant valence bond configurations of the intersecting states, which are zero-order approximations to the diabatic states.  相似文献   

9.
The dynamics of a system incorporating a conical intersection, in the presence of a dissipative environment, is studied with the purpose of identifying observable ultrafast spectroscopic signatures. A model system consisting of two vibronically coupled electronic states with two nuclear degrees of freedom is constructed. Dissipation is treated by two different methods, Lindblad semigroup formalism and the surrogate Hamiltonian approach. Pump-probe experimental expectation values such as transient emission and transient absorption are calculated and compared to the adiabatic and diabatic population transfer. The ultrafast population transfer reflecting the conical intersection is not mirrored in transient absorption measurements such as the recovery of the bleach. Emission from the excited state can be suppressed on the ultrafast time scale, but the existence of a conical intersection is only one of the possible mechanisms that can provide ultrafast damping of emission.  相似文献   

10.
Multiconfigurational second-order perturbation theory has been employed to calculate two-dimensional potential energy surfaces for the lowest low-lying singlet electronic states of CH2BrCl as a function of the two carbon-halogen bonds. The photochemistry of the system is controlled by a nonadiabatic crossing occurring between the A and B bands, attributed to the b1A' and c1A' states, which are found almost degenerate and forming a near-degeneracy line of almost equidistant C-Br and C-Cl bonds. A crossing point in the near-degeneracy line is identified as a conical intersection in this reduced two-dimensional space. The positions of the conical intersection located at CASSCF, single-state (SS)-CASPT2, and multistate (MS)-CASPT2 levels of theory are compared, also paying attention to the nonorthogonality problem of perturbative approaches. To validate the presence of the conical intersection versus an avoided crossing, the geometrical phase effect has been checked using the multiconfigurational MS-CASPT2 wave function.  相似文献   

11.
12.
Wave packet signals in Li(2) prepared by shaped pump pulses are also detected with state-selected shaped probe pulses in the ionization continuum. The results show that the final states are discrete Rydberg states instead of continuum states. Final autoionizing states in the continuum are observed and characterized. By selecting specific resonant rovibrational electronic transitions from the superposition states prepared in the wave packets to the final autoionizing states with the pulse shaping system, the modulation depths of the wave packet signals are increased by as much as 5.20+/-0.03 times. Control of the wave packets is also realized by shaping the probe pulses to select specific resonant transitions between the states in the wave packets and the highly excited Rydberg states. The detected amplitude ratio of one specific vibrational quantum beat to one specific rotational quantum beat can be decreased by ten times.  相似文献   

13.
The photochemical formation of an allylcyclopropene derivative from E-hexatriene is studied with the AM1 semiempirical method. Two possible reaction mechanisms, with a differing sequence of [1,2]-hydrogen migration and [1,3]-bond formation, are compared. In this study a new phenomenon emerged: when three bonds of the triene are twisted by 90°, a conical intersection between ground and excited state occurs, through which efficient radiationless decay and product formation can take place. The reaction mechanism in which [1,3]-bond formation is the primary step is the more efficient of the two mechanisms studied, but decay via the conical intersection is somewhat more facile.  相似文献   

14.
The mechanisms of the photochemical isomerization reactions were investigated theoretically using a model system of 2-cyanopyrrole and 2-cyano-5-methylpyrrole with the CASSCF (eight-electron/seven-orbital active space) and MP2-CAS methods and the 6-311(d,p) basis set. The structures of the conical intersections, which play a decisive role in such phototranspositions, were obtained. The intermediates and transition structures of the ground state were also calculated to assist in providing a qualitative explanation of the reaction pathways. Our model investigations suggest that the preferred reaction route for the cyanopyrroles is as follows: reactant --> Franck-Condon region --> conical intersection --> photoproduct. In particular, the conical intersection mechanism found in this work gives a better explanation than the previously proposed internal cyclization-isomerization mechanism and supports the experimental observations. In addition, we suggest a simple p-pi orbital topology model, which can be used as a guide tool to predict the location at which conical intersections are likely to occur, as well as the conformations of the phototransposition products of various heterocycles.  相似文献   

15.
On-the-fly CASSCF nonadiabatic dynamics have been used to model the trans-cis isomerization of a model cyanine dye. Our results show that the photochemical generation of the trans versus cis product is dynamically controlled by the presence of an extended cis-trans conical intersection seam that persists along all torsional angles. This in turn suggests that the photochemistry could be completely controlled by controlling the distribution of momentum components in a wave packet excited by laser photolysis in a coherent control experiment.  相似文献   

16.
A conical intersection between the ground and first-excited states of water is computed through the direct calculation of two-electron reduced density matrices (2-RDMs) from solutions of the anti-Hermitian contracted Schr?dinger equation (ACSE). This study is an extension of a previous study in which the ACSE was used to compute the energies around a conical intersection in the triplet excited states of methylene [Snyder, J. W., Jr.; Rothman, A. E.; Foley, J. J.; Mazziotti, D. A. J. Chem. Phys. 2010, 132, 154109]. We compute absolute energies of the 1(1)A' and 2(1)A' states of water (H(2)O) and the location of the conical intersection. The ACSE energies are compared to those from ab initio wave function methods. To treat multireference correlation, we seed the ACSE with an initial 2-RDM from a multiconfiguration self-consistent field (MCSCF) calculation. Unlike the situation for methylene, the two states in the vicinity of the conical intersection of water both have the same spatial symmetry. Hence, the study demonstrates the ability of the ACSE to resolve states of the same spatial symmetry that are nearly degenerate in energy. The 2-RDMs from the ACSE nearly satisfy necessary N-representability conditions. Comparison of the results from double-ζ and augmented double-ζ basis sets demonstrates the importance of augmented (or diffuse) functions for determining the location of the conical intersection.  相似文献   

17.
The photoinduced hydrogen-elimination reaction in pyrrole via the conical intersections of the two (1)pi sigma(*) excited states with the electronic ground states [(1)B(1)(pi sigma(*))-S(0) and (1)A(2)(pi sigma(*))-S(0)] have been investigated by time-dependent quantum wave-packet calculations. Model potential-energy surfaces of reduced dimensionality have been constructed on the basis of accurate multireference ab initio electronic-structure calculations. For the (1)B(1)-S(0) conical intersection, the model includes the NH stretching coordinate as the tuning mode and the hydrogen out-of-plane bending coordinate as the coupling mode. For the (1)A(2)-S(0) conical intersection, the NH stretching coordinate and the screwing coordinate of the ring hydrogens are taken into account. The latter is the dominant coupling mode of this conical intersection. The electronic population-transfer processes at the conical intersections, the branching ratio between the dissociation channels, and their dependence on the initial preparation of the system have been investigated for pyrrole and deuterated pyrrole. It is shown that the excitation of the NH stretching mode strongly enhances the reaction rate, while the excitation of the coupling mode influences the branching ratio of different dissociation channels. The results suggest that laser control of the photodissociation of pyrrole via mode-specific vibrational excitation should be possible. The calculations provide insight into the microscopic details of ultrafast internal-conversion processes in pyrrole via hydrogen-detachment processes, which are aborted at the (1)pi sigma(*)-S(0) conical intersections. These mechanisms are of relevance for the photostability of the building blocks of life (e.g., the DNA bases).  相似文献   

18.
We present an all optical control mechanism for the switching process in fulgides via electronically excited states in the presence of conical intersections. The underlying photoreaction is the ring opening or closure of the central C6-ring chromophore. The control of this reaction is realized with shaped laser pulses which are obtained by Optimal Control Theory. Our implementation of the algorithm enables the definition of a target in the electronic ground state even if vibrationally hot product states are formed during the reaction demanding the appliance of a damping function. We introduce a flexible target definition including all parts of the wavepacket that will reach the target region within a given time interval T. Thereby the localization of the wavepacket inside this region at a specific point in time is not mandatory. A target definition in the ground state facilitates the comparability to experiments. With this target, the control algorithm favors an all optical process which is faster than the relaxation through the conical intersections. To enhance the possibility of experimental realizations, we analyze the optimized pump–dump sequence to allow a reconstruction and simplification of the laser field.  相似文献   

19.
Optimal control theory is used to tailor laser pulses which enhance a femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) spectrum in a certain frequency range. For this aim the optimal control theory has to be applied to a target state distributed in time. Explicit control mechanisms are given for shaping either the Stokes or the probe pulse in the four-wave mixing process. A simple molecule for which highly accurate potential energy surfaces are available, namely molecular iodine, is used to test the procedure. This approach of controlling vibrational motion and delivering higher intensities to certain frequency ranges might also be important for the improvement of CARS microscopy.  相似文献   

20.
The mechanisms of the photochemical isomerization reactions were investigated theoretically using three model systems; 2‐methylthiophene, 2‐cyanothiophene, and 2‐phenylthiophene. The CASSCF (10‐electron/eight‐orbital active space) and MP2‐CAS methods were employed with the 6‐311(d) basis set. Three mechanisms, i.e., the internal cyclization‐isomerization route (path A), the zwitterion‐tricyclic route (path B), and the direct route (path C), have been used to explore the real photochemical reaction mechanism of these three model molecules. The structures of the conical intersections, which play a key role in such phototranspositions, were obtained. The intermediates and transition structures of the ground states were also calculated to assist in providing a qualitative explanation of the reaction pathways. Our model investigations suggest that the preferred reaction route is as follows: reactant → Franck‐Condon region → conical intersection → photoproduct. In particular, the conical intersection mechanism described in this work gives a better explanation than either the previously proposed internal cyclization‐isomerization (path A) or the zwitterion‐tricyclic pathway (path B) mechanisms, and is supported by the experimental observations. The results obtained allow a number of predictions to be made. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号