首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The normally weak process of hyper-Raman scattering can be greatly enhanced when the excitation is two photon resonant with an electronic transition that is both one and two photon allowed. It might be expected to be further enhanced when a one-photon allowed transition provides an intermediate state resonance in the two-photon excitation step. The theory of this triply resonant process is developed for organic nonlinear chromophores. Experimental results are obtained for one donor-acceptor substituted push-pull chromophore in which the energy of the strongly allowed lowest-lying one-photon state may be tuned by varying the solvent without substantially affecting the two-photon resonant transition. Surprisingly, bringing the one-photon allowed state into resonance does not significantly increase the hyper-Rayleigh or hyper-Raman hyperpolarizabilities. Analysis of the resonance Raman, hyper-Rayleigh, and hyper-Raman profiles suggests that the triply resonant path does not make the dominant contribution to the hyperpolarizability in this system.  相似文献   

2.
The frequency dependence of the first molecular hyperpolarizability of a dendrimer incorporated with thiophene-stilbene based charge-transfer chromophores is investigated by using a nanosecond 1907 nm laser and a number of wavelengths ranging from 1160 to 1760 nm emitted from an optical parametric amplifier pumped by a 1 kHz 130 fs Ti:sapphire laser. The measured hyperpolarizabilities are compared with those calculated from the charge-transfer absorption spectrum involving a Kramers-Kronig transformation scheme. The Kramers-Kronig transformation analysis provides a satisfactory account of the dispersion of the first molecular hyperpolarizability over the entire excitation wavelength range measured. The Kramers-Kronig technique extends the Oudar-Chemla two-level model previously proposed for the first molecular hyperpolarizability and it can be used in the nonresonance as well as the resonance region where the Oudar-Chemla model fails. The Kramers-Kronig transformation scheme allows a consistent intrinsic hyperpolarizability beta(0) to be obtained from the measured beta(HRS) using different excitation wavelengths for the dendrimer. The comparison of beta(0) for the dendrimer, which contains three chromophores, with that of corresponding monomer chromophore suggests that the chromophores inside the dendrimer are independent. This gives the evidence of the site isolation effect of the dendrimer and substantiates the larger macroscopic optical nonlinearity recently obtained for the dendrimer.  相似文献   

3.
Resonance Raman and resonance hyper-Raman spectra of the "push-pull" conjugated molecule 1-(4'-dihexylaminostyryl)-4-(4"-nitrostyryl)benzene in acetone have been measured at excitation wavelengths from 485 to 356 nm (two-photon wavelengths for the nonlinear spectra), resonant with the first two bands in the linear absorption spectrum. The theory of resonance hyper-Raman scattering intensities is developed and simplified using assumptions appropriate for intramolecular charge-transfer transitions of large molecules in solution. The absorption spectrum and the Raman, hyper-Rayleigh, and hyper-Raman excitation profiles, all in absolute intensity units, are quantitatively simulated to probe the structures and the one- and two-photon transition strengths of the two lowest-energy allowed electronic transitions. All four spectroscopic observables are reasonably well reproduced with a single set of excited-state parameters. The two lowest-energy, one-photon allowed electronic transitions have fairly comparable one-photon and two-photon transition strengths, but the higher-energy transition is largely localized on the nitrophenyl group while the lower-energy transition is more delocalized.  相似文献   

4.
Resonance hyper-Raman spectra have been obtained using 1064 nm excitation for several electron donor-acceptor-substituted, pi-conjugated "push-pull" molecules that have large second harmonic hyperpolarizabilities. The hyper-Raman spectra are nearly identical to the resonance Raman spectra measured with 532 nm excitation. This indicates that both the second harmonic hyperpolarizability and the linear absorption are dominated by the same, single electronic transition that is both one- and two-photon allowed. Comparison of resonance Raman and resonance hyper-Raman spectra is proposed as an experimental test of the common two-electronic-state model for the first hyperpolarizability.  相似文献   

5.
Two-photon-resonant hyper-Raman spectra are reported for three "push-pull" conjugated organic chromophores bearing -NO(2) acceptor groups, two dipolar and one octupolar. The excitation source is an unamplified picosecond mode-locked Ti:sapphire laser tunable from 720 to 950 nm. The linear resonance Raman spectra of the same molecules are measured using excitation from the laser second harmonic. Excitation on resonance with the lowest-lying band in the linear absorption spectrum yields nearly identical resonance Raman and resonance hyper-Raman spectra. However, excitation into a region that appears to contain more than one electronic transition gives rise to different intensity patterns in the linear and nonlinear spectra, indicating that different transitions contribute differently to the one-photon and two-photon oscillator strength. The promise of the hyper-Raman technique for examining electronic transitions that are both one- and two-photon allowed is discussed.  相似文献   

6.
Many squaraines have been observed to exhibit two-photon absorption at transition energies close to those of the lowest energy one-photon electronic transitions. Here, the electronic and vibronic contributions to these low-energy two-photon absorptions are elucidated by performing correlated quantum-chemical calculations on model chromophores that differ in their terminal donor groups (diarylaminothienyl, indolenylidenemethyl, dimethylaminopolyenyl, or 4-(dimethylamino)phenylpolyenyl). For squaraines with diarylaminothienyl and dimethylaminopolyenyl donors and for the longer examples of 4-(dimethylamino)phenylpolyenyl donors, the calculated energies of the lowest two-photon active states approach those of the lowest energy one-photon active (1B(u)) states. This is consistent with the existence of purely electronic channels for low-energy two-photon absorption (TPA) in these types of chromophores. On the other hand, for all squaraines containing indolinylidenemethyl donors, the calculations indicate that there are no low-lying electronic states of appropriate symmetry for TPA. Actually, we find that the lowest energy TPA transitions can be explained through coupling of the one-photon absorption (OPA) active 1B(u) state with b(u) vibrational modes. Through implementation of Herzberg-Teller theory, we are able to identify the vibrational modes responsible for the low-energy TPA peak and to reproduce, at least qualitatively, the experimental TPA spectra of several squaraines of this type.  相似文献   

7.
Using a combined electronic structure and molecular dynamics simulation method, we calculated the infrared and Raman spectra for the OH vibrations in liquid CH(3)OH. The vibrational frequencies, transition dipole moments, and transition polarizabilities are obtained from density functional theory calculations and then mapped into an empirical relation to the electric field on the H atom along the OH bond. Vibrational couplings between OH chromophores on different molecules are treated using transition dipole interactions. The simulated infrared and Raman line shapes are in good agreement with experimental observations. We have also shown that the vibrations of non-hydrogen-bonded OH groups contribute significantly to the difference between the IR and Raman line shapes.  相似文献   

8.
Linear absorption spectra, resonance Raman spectra and excitation profiles, and two-photon-resonant hyper-Rayleigh and hyper-Raman scattering hyperpolarizability profiles are reported for the push-pull chromophore N,N-dipropyl-p-nitroaniline in seven solvents spanning a wide range of polarities. The absorption spectral maximum red shifts by about 2700 cm(-1), and the symmetric -NO2 stretch shifts to lower frequencies by about 11 cm(-1) from hexane to acetonitrile, indicative of significant solvent effects on both the ground and excited electronic states. The intensity patterns in the resonance Raman and hyper-Raman spectra are similar and show only a small solvent dependence except in acetonitrile, where both the Raman and hyper-Raman intensities are considerably reduced. Quantitative modeling of all four spectroscopic observables in all seven solvents reveals that the origin of this effect is an increased solvent-induced homogeneous broadening in acetonitrile. The linear absorption oscillator strength is nearly solvent-independent, and the peak resonant hyperpolarizability, beta(-2omega;omega,omega), varies by only about 15% across the wide range of solvents examined. These results suggest that the resonant two-photon absorption cross sections in this chromophore should exhibit only a weak solvent dependence.  相似文献   

9.
Coherent anti-Stokes Raman scattering (CARS) spectra of excited molecules as well as Shpolskii spectra provide information about geometry changes between ground and excited states. Vibrational frequencies and relative intensities from recently obtained CARS spectra of the chrysene S1 and T1 state and earlier observed Shpolskii spectra are interpreted in terms of molecular geometry and force-field changes by means of quantum-chemical consistent force field (QCFF) and Franck-Condon factor calculations. The comparison of observed and calculated relative intensities indicates a coupling between the S1 and S2 state enhancing some of the vibrational radiative singlet transitions both in absorption and fluorescence spectra whereas within the phosphorescence spectra proportionality to calculated Franck-Condon factors is obeyed. The T1 state is the more loosely bound state and its geometry change is different from that of the S1 state. The resonance CARS transitions in the S1 state are assigned to totally symmetric vibrations getting their intensity by a coupling scheme analogous to the A term of the resonance Raman effect: the relative intensity of a transition is shown to be proportional to the Franck-Condon factor to the higher excited state and to the squared vibrational frequency. Using this relation this state can be identified by means of its finger-print-like intensity pattern.  相似文献   

10.
Wavelength dependent hyper-Rayleigh scattering measurements have been performed by using a fluorescence spectrometer. With this detection strategy, first molecular hyperpolarizability (β) of a dual charge-transfer (H-shaped) chromophore and its monomer have been measured in two-photon resonance range from 670 to 950 nm as well as at off-resonance of 1064 nm. The absorption and resonance hyper-Rayleigh profiles can be simulated reasonably well with a common set of parameters. In addition, both resonance and off-resonance results show that β(0) per chromophore has a remarkable enhancement for the H-shaped molecule as large as 1.7, compared with that of the monomer, which could be ascribed to two physical effects: (1) coherent enhancement of two chromophores and (2) intramolecular dipole-dipole interaction, which was confirmed by their fluorescence-decay behaviors.  相似文献   

11.
The two-photon-resonant first hyperpolarizabilities associated with hyper-Rayleigh and hyper-Raman scattering are reported for 4-dimethylamino-4-nitrostilbene in 1,4-dioxane, dichloromethane, acetonitrile, and methanol, and for an ionic analog, 4-N,N-bis(6-(N,N,N-trimethylammonium)-hexyl)amino-4-nitrostilbene dibromide in methanol and water. Resonance Raman and hyper-Raman excitation profiles are also measured and modeled. The resonance Raman and hyper-Raman spectra show very similar relative intensities which do not vary much as the excitation frequency is tuned across the lowest-energy strong linear absorption band, suggesting that a single resonant electronic state dominates the one- and two-photon absorptions in this region. The absorption, resonance Raman, and hyper-Raman profiles can be simulated reasonably well with a common set of parameters. The peak resonant (absolute value of beta)2, measured by hyper-Rayleigh scattering, varies by about 50% over the range of solvents examined and shows a weak correlation with the linear absorption maximum, with the redder-absorbing systems exhibiting larger peak hyperpolarizabilities. The experimental hyper-Rayleigh intensities are higher than those calculated, possibly reflecting contributions from nonresonant electronic states.  相似文献   

12.
We have measured electronic and Raman scattering spectra of 1,1',3,3'-tetraethyl-5,5',6,6'-tetrachloro-benzimidazolocarbocyanine iodide (TTBC) in various environments, and we have calculated the ground state geometric and spectroscopic properties of the TTBC cation in the gas and solution phases (e.g., bond distances, bond angles, charge distributions, and Raman vibrational frequencies) using density functional theory. Our structure calculations have shown that the ground state equilibrium structure of a cis-conformer lies ~200 cm(-1) above that of a trans-conformer and both conformers have C(2) symmetry. Calculated electronic transitions indicate that the difference between the first transitions of the two conformers is about 130 cm(-1). Raman spectral assignments of monomeric- and aggregated-TTBC cations have been aided by density functional calculations at the same level of the theory. Vibrational mode analyses of the calculated Raman spectra reveal that the observed Raman bands above 700 cm(-1) are mainly associated with the in-plane deformation of the benzimidazolo moieties, while bands below 700 cm(-1) are associated with out-of-plane deformations of the benzimidazolo moieties. We have also found that for the nonresonance excited experimental Raman spectrum of aggregated-TTBC cation, the Raman bands in the higher-frequency region are enhanced compared with those in the nonresonance spectrum of the monomeric cation. For the experimental Raman spectrum of the aggregate under resonance excitation, however, we find new Raman features below 600 cm(-1), in addition to a significantly enhanced Raman peak at 671 cm(-1) that are associated with out-of-plane distortions. Also, time-dependent density functional theory calculations suggest that the experimentally observed electronic transition at ~515 nm (i.e., 2.41 eV) in the absorption spectrum of the monomeric-TTBC cation predominantly results from the π → π? transition. Calculations are further interpreted as indicating that the observed shoulder in the absorption spectrum of TTBC in methanol at 494 nm (i.e., 2.51 eV) likely results from the ν(") = 0 → ν' = 1 transition and is not due to another electronic transition of the trans-conformer-despite the fact that measured and calculated NMR results (not provided here) support the prospect that the shoulder might be attributable to the 0-0 band of the cis-conformer.  相似文献   

13.
The infrared and Raman spectra of 2-hydroxy-3-methoxy-N-(2-chloro-benzyl)-benzaldehyde-imine (HMCBI) have been recorded and analyzed. Density functional calculations at B3LYP/6-311++G(d,p) level were carried out to study the equilibrium geometries and vibrational spectra of HMCBI. The calculations revealed that the optimized geometry closely resembled the experimental XRD data. The calculated vibrational spectra were analyzed on the basis of the potential energy distribution (PED) of each vibrational mode, which allowed us to obtain a quantitative as well as qualitative interpretation of IR and Raman spectra. The 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule in the ground state were calculated by Gauge independent atomic orbital (GIAO) method. Information about size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential surface. Based on optimized ground state geometries, the NBO analysis has been done to study donor–acceptor (bond–antibond) interactions. The TD-DFT method has been used to calculate energies, oscillator strengths of electronic singlet–singlet transitions and the absorption wavelengths. Solvent effects were considered using the polarizable continuum model (PCM). Good consistency is found between the calculated results and experimental data for the electronic absorption. The calculated first hyperpolarizability may be attractive for further studies on non-linear optical properties of materials.  相似文献   

14.
Abstract —Fourier transform infrared (FTIR) difference spectra of the BR→rK transition in bacteriorhodopsin at 77→K are compared with analogous resonance Raman difference spectra obtained using a spinning sample cell at 77→K. The vibrational frequencies observed in the FTIR spectra of native purple membrane and of purple membrane regenerated with 15-deuterioretinal are in good agreement with the frequencies observed in the Raman spectra, indicating that the lines in the FTIR difference spectra arise predominantly from retinal chromophore vibrations. This agreement confirms that the spinning cell method for obtaining resonance Raman spectra of K minimizes potential contributions from unwanted photoproducts. The unexpected similarity between the resonance Raman scattering intensities and the FTIR absorption intensities for BR and K is discussed in terms of the delocalized electronic structure of the chromophore. Finally, comparison of the Schiff base regions of the K Raman and FTIR spectra provide additional information on the assignment of its Schiff base vibration.  相似文献   

15.
Resonance Raman spectra are obtained when the wave number of the exciting radiation is close to, or coincident with, that of an electronic transition of the scattering species. Such spectra are usually characterized by a very large enhancement of the intensities of particular Raman bands, sometimes with the appearance of intense overtone and combination tone progressions. The technique provides detailed information about excited electronic states because it is only the vibrational modes associated with the chromophore that are resonance-Raman active. Additionally, the high sensitivity is such that compounds at concentrations as low as 10?6 mol/L may be detected, enabling resonance Raman spectroscopy to be used as an analytical tool and for the study of chromophores in molecules of biological interest.  相似文献   

16.
The doubly resonant IR-UV sum-frequency vibrational spectroscopy (SFVS) of 1,1'-bi-2-naphthol (BN) solution and its dispersion spectra are analyzed and computed using the ZINDO//AM1 calculation and the direct approach of Raman scattering tensor calculation, which is based on calculations of Franck-Condon factors and on differentiation of the electronic transition moments with respect to the vibrational normal modes. The calculated results indicate that, for the most intense vibrational bands observed in the SFVS experiment, the calculated frequencies, symmetry, order, intensities, and pattern of the enhanced vibrational modes agree with experiment qualitatively, and due to the Franck-Condon progression, there are the doublet peaks in the corresponding resonant sum-frequency dispersion spectra. The polarization resonance Raman spectra of BN for the vibrational modes appearing in SFVS are also computed and associated with the experiment SFVS of BN. This direct evaluation approach of Raman tensors may provide a way of assigning the doubly resonant IR-UV SFVS.  相似文献   

17.
The optical absorption, emission, FT Raman, one-photon excitation, two-photon excitation, and luminescence lifetime measurements are reported for UO(2)Cl(4)(2)(-) in 40:60 AlCl(3)-EMIC (where EMIC identical with 1-ethyl-3-methylimidazolium chloride), a room-temperature ionic liquid. Comparison of the spectra with previous results from single crystals containing UO(2)Cl(4)(2)(-) allowed the characterization of four ground-state vibrational frequencies, two excited-state vibrational frequencies, and the location of eight electronic excited-state energy levels. The vibrational frequencies and electronic energy levels are found to be consistent with the UO(2)Cl(4)(2)(-) ion. Comparison of the one-photon and two-photon excitation spectra, and the relative intensities of the transitions in the emission spectrum indicate that the center of symmetry is perturbed by an interaction with the solvent.  相似文献   

18.
We have calculated the vibrational frequencies of clusters of atoms from the first principles by using the density-functional theory in the local density approximation (LDA). We are also able to calculate the electronic binding energy for all of the clusters of atoms from the optimized structure. We have made clusters of BanOm (n, m=1-6) and have determined the bond lengths, vibrational frequencies as well as intensities in each case. We find that the peroxide cluster BaO2 occurs with the O-O vibrational frequency of 836.3 cm(-1). We also find that a glass network occurs in the material which explains the vibrational frequency of 67 cm(-1). The calculated values agree with those measured from the Raman spectra of barium peroxide and Ba-B-oxide glass. We have calculated the vibrational frequencies of BaO4, GeO4 and SiO4 each in tetrahedral configuration and find that the vibrational frequencies in these systems depend on the inverse square root of the atomic mass.  相似文献   

19.
Excitation profiles of SERS (surface-enhanced Raman scattering) and/or SERRS (surface-enhanced resonance Raman scattering) spectral bands of two forms of a Ag-bpy (bpy = 2,2'-bipyridine) surface complex and of [Ru(bpy)3]2+ on Ag nanoparticle (hydrosol) surfaces were determined from the spectra excited in the 458-600 nm region and are reported together with the FT-SERS spectra of the Ag-bpy surface complex and FT Raman spectra of [Ru(bpy)3] Cl2. Seven of the observed 11 fundamentals as well as their first overtones and combination bands are selectively enhanced in SERS of the Ag-bpy surface complex formed in the Ag colloid/HCl/bpy system. The profiles of these bands show a common maximum at approximately 540 nm. The selectively enhanced bands of the Ag-bpy surface complex have nearly the same wavenumbers as those enhanced in the SERRS and resonance Raman spectra of [Ru(bpy)3]2+ upon excitation close to the 453 nm maximum of its MLCT absorption band. Moreover, the intensity patterns of the bpy vibrations of the two species match both in resonance (541 nm excitation for Ag-bpy, 458 nm for [Ru(bpy)3]2+) and in off-resonance (458 and 1064 nm for Ag-bpy, 1064 nm for [Ru(bpy)3]2+). The distinct band shapes of the excitation profiles of the selectively enhanced vibrational modes of the Ag-bpy surface complex, as well as the observation of overtones and combination bands in the SERS spectra upon excitation into this "band", are interpreted in terms of a charge-transfer resonance contribution to the overall SERS enhancement. In view of the near-coincidence of the vibrational modes coupled to the resonant electronic transition of Ag-bpy with those coupled to the MLCT transition of [Ru(bpy)3]2+, the resonant electronic transition is tentatively assigned to a Ag metal to bpy (pi*) CT transition.  相似文献   

20.
This work describes a comprehensive assignment of the vibrational spectra of the platinum(II) diimine bisthiolate and chloride complexes as a prototype structure for a diversity of Pt(II) diimine chromophores. The dynamics and energy dissipation pathways in excited states of light harvesting molecules relies largely on the coupling between the high frequency and the low frequency modes. As such, the assignment of the vibrational spectrum of the chromophore is of utmost importance, especially in the low-frequency region, below 500 cm(-1), where the key metal-ligand framework modes occur. This region is experimentally difficult to access with infrared spectroscopy and hence frequently remains elusive. However, this region is easily accessible with Raman and inelastic neutron scattering (INS) spectroscopies. Accordingly, a combination of inelastic neutron scattering and Raman spectroscopy with the aid of computational results from periodic-DFT and the mode visualizations, as well as isotopic substitution, allowed for an identification of the modes that contain significant contributions from Pt-Cl, Pt-S, and Pt-N stretch modes. The results also demonstrate that it is not possible to assign transition energies to "pure", localized modes in the low frequency region, as a consequence of the anticipated severe coupling that occurs among the skeletal modes. The use of INS has proved invaluable in identifying and assigning the modes in the lowest frequency region, and overall the results will be of assistance in analyzing the structure of the electronic excited state in the families of chromophores containing a Pt(diimine) core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号