首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 223 毫秒
1.
基于CHRIS数据的新型植被指数的LAI估算研究   总被引:2,自引:0,他引:2  
叶面积指数(LAI)作为重要的植被冠层结构参数,对其进行正确估算一直是遥感应用研究的重点。CHRIS/PROBA是目前具有较高分辨率(17 m)的高光谱多角度数据,该数据在反演LAI方面有着重要的应用价值。本次研究应用辐射传输ACRM模型来模拟一系列LAI在不同观测天顶角(-80°~+80°)情况下的植被光谱数据,在此基础上利用红波段和近红外波段构建了一个新型高光谱多角度植被指数HDVI,并成功地应用于CHRIS/PROBA数据对LAI的估算。结果表明:(1)相比光谱指数NDVI和多角度指数HDS,新指数能更好地利用光谱和多角度双重信息,与研究区LAI有着更好的相关性,决定系数R2高达0.734 7。(2)利用LAI-HDVI最优拟合方程关系来估测LAI值,得到了研究区的LAI分布图,LAI估算精度均方根误差RMSE为0.619 8。  相似文献   

2.
为了探索运用数码照片中光谱(红、绿、蓝)的像素计算得到的冠层覆盖度(canopy cover, CC)对玉米长势及氮素营养状态进行非破坏性监测的技术。通过获取玉米冠层的数码照片图像,定量化数码照片色彩参数与作物叶面积指数(leaf area index, LAI)、冠层干重(shoot dry matter weight, DM)、叶片氮素含量(leaf nitrogen content percentage, N%)之间的关系。试验于2012年和2013年在中国农业科学院试验田进行,运用基于Visual Basic Version 6.0研发的玉米冠层图像分析系统,分析了玉米品种中单909在3个氮素水平条件下分别于9叶展时期、抽雄期和灌浆期的CC、11种色彩指数与植株LAI,DM,N%及产量之间的相关性,并对相关性显著的指标进行了拟合与建模。结果表明,CC与LAI(r=0.93, p<0.01),DM(r=0.94, p<0.01),N%(r=0.82, p<0.01)之间均达到了极显著水平;用CC估算LAI,DM和N%的模型均为幂函数,方程式分别是y=3.281 2x0.763 9,y=283.658 1x0.553 6,y=3.064 5x0.932 9;用与建模相独立的数据对模型验证,结果表明,CC估算LAI模型的实测值与模拟值基于1∶1直线的R2,RMSE和RE分别是0.996,0.035和1.46%;CC估算DM模型的R2,RMSE和RE分别是0.978,5.408 g和2.43%;CC估算N%模型的R2,RMSE和RE分别是0.990,0.054和2.62%。综上所述,模型能够较准确的通过CC估算不同氮肥水平条件下玉米9叶展时期、抽雄期和灌浆期的LAI,DM与N%,表明应用数码相机的光谱信息可实现对玉米生长过程中的生长状况及氮素营养状态进行实时无损快速监测与预测。  相似文献   

3.
利用高光谱植被指数估测苹果树冠层叶绿素含量   总被引:8,自引:0,他引:8  
叶绿素含量是反映植物生长状况的重要参数。利用ASD FieldSpec 3光谱仪,测定春梢停止生长期苹果冠层高光谱反射率,对原始光谱进行微分变换,与苹果叶绿素含量进行相关分析确定敏感波段,通过分析敏感区域400~1 350 nm范围内所有两波段组合的植被指数,选择最佳植被指数并建立苹果冠层叶绿素含量估测模型。结果表明:(1)苹果冠层叶绿素含量的敏感波段区域为400~1 350 nm。(2)利用筛选得到的植被指数CCI(D794/D763)构建的估测模型能较好的估测苹果冠层叶绿素含量。(3)以CCI(D794/D763)指数为自变量的估测模型CCC=6.409+1.89R3+1.587R2-7.779R预测效果最佳。因此,利用高光谱技术能够较快速、精确的对苹果冠层叶绿素含量进行定量化反演,为苹果长势的遥感监测提供理论依据。  相似文献   

4.
棉花冠层水分含量估算的高光谱指数研究   总被引:1,自引:0,他引:1  
适宜的光谱指数对于地表参数高光谱诊断模型的估算精度具有决定性作用。通过不同棉花冠层水分含量表征参数冠层等效水厚度EWTcanopy, 植株含水量VWC及其对应的光谱数据分析,构建350~2 500 nm范围内所有波段两两组合的比值指数RVI和归一化指数NDVI,分析水分含量表征参数与所有指数之间的相关关系,筛选最大相关系数对应的指数作为最佳水分指数,利用新指数构建水分含量表征参数的估算模型,并与已知的各种水分指数估算精度进行比较。结果表明:新建比值指数R1 475/R1 424及其归一化指数(R1 475-R1 424)/(R1 475+R1 424)对EWTcanopy的估算效果最佳,由其得到的估算值与实测值之间的相关系数r值达到0.849;已知指数(R835-R1 650)/(R835+R1 650)对VWC的估算效果最佳,由其得到估算值与实测值之间的相关系数r值为0.805。  相似文献   

5.
为了有效的解决玉米苗期冠层叶片营养状态车载动态诊断过程中,土壤干扰信息无法剔除的问题,本文提出了一种动态测量用光谱指数MPRI,根据MPRI的构成和特点、论述了利用MPRI辨识土壤与冠层光谱信息的机理,构建了基于MPRI的玉米苗期冠层叶片叶绿素含量的预测模型,通过车载式作物长势检测系统平台,运用模型对玉米苗期冠层叶片营养状态进行动态诊断与评估,取得良好的效果。研究表明:在车载动态条件下测量玉米苗期冠层叶片营养状态时,土壤的MPRI呈正值而玉米冠层的MPRI呈负值,因此使用光谱指数MPRI能够有效识别土壤背景与冠层叶片光谱信息。设定固定的阈值,能够较为准确和便捷的去除土壤背景光谱信息。基于MPRI构建的冠层叶片叶绿素含量的动态测量预测模型,能够准确的表征冠层叶片的叶绿素含量,模型决定系数R2达0.72,动态测量中对植株冠层的识别率达80%。与其他常用的指数相比,在车载动态测量环境下,光谱指数MPRI具有土壤背景信息识别速度快、正确率高,模型预测精度良好等特点,为玉米苗期冠层营养状态的诊断提供了新的途径。  相似文献   

6.
基于CASI高光谱数据的作物叶面积指数估算   总被引:3,自引:0,他引:3  
叶面积指数(LAI)的快速估算对于及时了解作物长势、病虫害监测以及产量评估具有重要意义。利用2012年7月7日在黑河流域张掖市获取的CASI高光谱数据,精确提取出了不同作物的光谱反射率,同时结合地面实测数据,对比分析了宽波段和“红边”植被指数在估算作物LAI方面的潜力,在此基础上,基于波段组合算法,筛选出作物LAI估算的敏感波段,并构建了两个新型光谱指数NDSI和RSI,最后对研究区域作物LAI的空间分布进行了分析。结果表明,在植被覆盖度较低的情况下,宽波段植被指数NDVI对LAI具有较好的估算效果,模型的精度R2与RMSE分别为0.52,0.45(p<0.01);对于“红边”植被指数,由于CIred edge充分考虑了不同的作物类型,其对LAI的估算精度与NDVI一致;利用波段组合算法构建的光谱指数NDSI(569.00, 654.80)和RSI(597.6, 654.80)对LAI估算的效果要优于NDVI与CIred edge,其中,NDSI(569.00, 654.80)主要利用了植被光谱“绿峰”和“红谷”附近的波段,模型估算的精度R2可达0.77(p<0.000 1);根据LAI与NDSI(569.00, 654.80)之间的函数关系,绘制作物LAI的空间分布图,经分析,研究区域的西北部LAI值偏低,需增施肥料。研究结果,可为农业管理部门及时掌握作物长势信息、制定施肥策略提供技术支持。  相似文献   

7.
基于定量遥感反演的内陆水体藻类监测   总被引:1,自引:0,他引:1  
叶绿素作为衡量湖泊富营养化的重要指标,利用遥感技术对其进行实时动态监测具有重要意义。以太湖为例,通过对水体实测光谱和水质采样数据的分析,建立了光谱反射率比值与叶绿素a浓度的回归模型。结果显示,700 nm附近波段与625 nm附近波段所构建的比值模型R2最高,710 nm以后波段与其他可见光波段所构建的比值模型的R2会随可见光波长的增大而逐渐下降。在高光谱遥感估算模型的基础上,应用同步MODIS卫星遥感数据进行了太湖叶绿素a浓度的空间分布反演,并基于MODIS绿度指数建立了太湖藻华水体信息提取模型,从叶绿素a浓度估算和藻华信息提取两个方面实现了太湖藻类空间分布特征的定量反演,为太湖等大型内陆水体藻类的实时定量遥感监测提供了新的研究思路。  相似文献   

8.
晚播条件下基于高光谱的小麦叶面积指数估算方法   总被引:1,自引:0,他引:1  
利用高光谱遥感技术,分析晚播条件下小麦叶片与冠层模式光谱特征和叶面积指数(LAI)的变化规律,建立了适用于晚播小麦的叶面积指数估算方法。研究结果表明:(1)从红光和蓝紫光420~663 nm波段提取的叶绿素光谱反射率植被指数(CSRVI)与旗叶SPAD值做相关性分析,结果表明正常播期和晚播处理在叶片模式的相关系数分别为0.963*和0.997**,达显著和极显著水平。(2)利用相关性分析,得出两个播期处理的LAI与SPAD值相关系数分别是0.847*和0.813*,均达到显著水平。SPAD值与LAI及CSRVI指数均具有相关性,可以用CSRVI指数建立LAI的估算模型。(3)对叶片模式和冠层模式光谱曲线特征分析得出,叶片模式中在680~780 nm处的反射率呈现陡升趋势,在可见光波段的446和680 nm和近红外波段的1 440和1 925 nm处各有两个明显的吸收波谷,在540~600,1 660和2 210 nm波段处有两个明显的反射波峰;三种冠层模式中60°模式下的光谱反射率整体表现为最高。(4)将各波段反射率与叶面积指数做相关性分析得出在可见光波段范围内,光谱反射率与LAI总体呈现负相关性,500~600 nm处有一个波峰。(5)将三种冠层模式下(仪器入射角度分别与地面呈30°,60°和90°夹角)的等效植被指数与LAI做相关性分析得出:60°冠层模式下八种植被指数与正常播期LAI的相关性均未达显著水平,比值植被指数(RVI)、归一化植被指数(NDVI)、增强型植被指数(EVI)、再次归一化植被指数(RDVI)、土壤调整植被指数(SAVI)、修改型土壤调整植被指数(MSAVI)的等六种植被指数与晚播条件下的LAI具有显著和极显著相关关系;90°冠层模式下CSRVI指数与正常播期处理的LAI具有显著相关关系,NDVI指数与晚播处理的LAI具有显著相关关系;30°冠层模式下的八种植被指数与两播期处理的LAI的相关性均未达显著水平。综合分析CSRVI指数、NDVI指数的相关性最高,这两种指数最具有估算LAI的潜力。(6)通过三种冠层模式所计算的植被指数估算LAI模型,结果表明,正常播期条件下,其最佳估算模型是90°冠层模式CSRVI指数所建立的线性模型Y=-7.873 6+6.223 8X;晚播条件下的最佳模型是60°冠层模式RDVI指数所建立的幂函数模型Y=30 221 333.33X17.679 1,两个模型的决定系数R2分别为0.950*和0.974**。研究表明试验中所提取的CSRVI指数能够反映旗叶叶绿素含量,可以通过光谱仪器的叶片模式对小麦生育期内叶绿素含量进行监测;通过冠层模式计算的CSRVI指数和RDVI指数所建立的LAI估算模型可以对小麦的LAI进行无损害观察。  相似文献   

9.
遥感是开展地面/近地面、航空及航天层次无损伤探测植物叶绿素信息的主要手段。目前多波段计算光谱指数方法已被广泛地应用于植被冠层叶绿素含量的经验/半经验反演及应用中。考虑不同作物及同种作物不同品种间存在着一定的植被叶倾角分布(LAD)特征差异,针对叶倾角分布对光谱指数反演冠层叶绿素含量(CCC)的影响进行分析,并开展针对叶倾角分布变化不敏感的叶绿素相关光谱指数优选和冠层叶绿素反演建模研究。基于PROSAIL辐射传输模型模拟了不同叶片叶绿素含量(LCC)、叶面积指数(LAI)和LAD对应的冠层反射率数据。模拟结果显示,在相同LAI和LCC条件下,不同LAD对应的冠层反射率有明显差异,冠层反射率随着平均叶倾角的增加而降低。通过计算12个常用的叶绿素相关光谱指数与CCC的相关性指标,来评估光谱指数在不同LAD下反演叶绿素含量的敏感性差异,并依次优选出MTCI,MNDVI8,MNDVI1和CIred-edge4个对LAD变化较不敏感的叶绿素相关光谱指数。利用玉米实测数据对光谱指数进行冠层叶绿素估测的建模和模型检验,模型的建立和验证结果显示,MNDVI8对LAD变化最不敏感,反演模型的精度最高,决定系数R2=0.70,均方根误差RMSE=22.47 μg·cm-2。CIred-edge(R2=0.63,RMSE=24.06 μg·cm-2),MNDVI(R2=0.66,RMSE=24.07 μg·cm-2)和MTCI(R2=0.65,RMSE=26.76 μg·cm-2)反演模型的精度较为接近并稍弱于MNDVI8。通过对反演结果分析得出结论,不同的光谱指数对LAD变化的敏感性不同,优选的光谱指数普遍对叶绿素含量具有较好的相关性和敏感性,其中MNDVI8受LAD影响最小,能较高精度的反演LAD变化下的玉米冠层叶绿素含量。优选的其他光谱指数MTCI,CIred-edge和MNDVI1反演能力虽然稍弱于MNDVI8,但受LAD影响较小,同样具有较好的反演能力。该工作开展LAD对光谱指数叶绿素反演的敏感性分析和光谱指数优选研究,其实测数据的检验结果和模拟数据的分析结果一致;基于优选光谱指数的冠层叶绿素含量反演建模结果及精度分析结论,对开展缺乏叶倾角分布差异先验知识下的大范围作物叶绿素含量遥感估测和应用具有借鉴意义。  相似文献   

10.
玉米作物多光谱图像精准分割与叶绿素诊断方法研究   总被引:3,自引:0,他引:3  
为了快速获取大田玉米作物长势信息,基于多光谱图像开展了大田玉米叶绿素指标的非破坏性诊断研究。应用自主开发的2-CCD多光谱图像感知系统,在田间采集玉米冠层可见光[Blue(B),Green(G),Red(R);400~700 nm]和近红外(Near-infrared: NIR,760~1 000 nm)图像,并使用SPAD同步测量样本叶绿素指标。采集后图像经自适应平滑滤波处理后,进行图像玉米植株提取。为了选择最优算法实现玉米植株与杂草、土壤背景的分割,首先比较了最大类间方差(OTSU)分割算法和局部阈值处理分割算法,选取了基于局部统计的可变阈值处理方法对玉米NIR图像进行初步分割,进而采用区域标记算法进行精细分割,分割准确率达95.59%。将分割结果应用于玉米植株可见光图像R,G,B各通道,从而实现了玉米植株多光谱图像中可见光图像的整体分割。基于分割后R,G,B和NIR四个通道的玉米冠层图像,提取了各通道图像灰度均值(ANIR,ARed,AGreenABlue)并计算了归一化植被指数(NDVI)、比值植被指数(RVI)和绿色归一化植被指数(NDGI)作为光谱特征参数,建立了玉米冠层叶绿素指标诊断的偏最小二乘法回归模型。结果表明,建模R2达0.596 0,预测R2达0.568 5,该方法通过玉米多光谱图像特征参数评估叶片叶绿素含量,可为大田玉米长势监测提供支持。  相似文献   

11.
利用光谱指数反演植被叶绿素含量的精度及稳定性研究   总被引:9,自引:0,他引:9  
农业遥感中,利用光谱指数方法反演作物叶绿素含量一直得到广泛地应用。利用PSR-3500光谱仪及SPAD-502叶绿素仪同步获取了冬小麦冠层光谱数据及对应叶片的叶绿素相对含量(SPAD值),并利用高斯光谱响应模型将PSR获取的地面连续光谱数据重采样为多光谱Landsat-TM7及高光谱Hyperion光谱数据,然后分别计算基于两种传感器的归一化差值植被指数(normalized difference vegetation index, NDVI)、综合叶绿素光谱指数(MCARI/OSAVI,the ratio of the modified transformed chlorophyll absorption ratio index (MCARI) to optimized soil adjusted vegetation index(OSAVI))、三角形植被指数(triangle vegetation index, TVI)及通用植被指数(vegetation index based on universal pattern decomposition method, VIUPD),再将四种光谱指数与叶绿素含量进行回归分析。结果表明,针对重采样后的TM和Hyperion两种传感器数据,VIUPD反演叶绿素含量精度(决定系数R2)最高,反演能力最稳定,这与其“不受传感器影响”的特性密不可分;MCARI/OSAVI反演精度和稳定性次之,是因为引入的OSAVI削弱了土壤背景的影响;宽波段指数NDVI和TVI对模拟TM数据有较好的反演精度,对Hyperion数据反演精度却很低,可能是因为两种指数的构成形式简单,考虑的影响因素较少。以冬小麦为例,对利用光谱指数反演植被叶绿素含量的精度和稳定性进行了研究并分析了其影响因素,经比较发现利用植被指数VIUPD进行植被叶绿素含量反演时,其精度和稳定性最好。  相似文献   

12.
冬小麦不同生育时期叶面积指数反演方法   总被引:20,自引:0,他引:20  
针对当前作物叶面积指数遥感反演过程中,在不同生育时期采用相同的植被指数进行反演存在叶面积指数反演精度较低的问题。以冬小麦为研究对象,选取了对冬小麦覆盖度响应程度不同的六种宽带和四种窄带共10种植被指数,分析比较了在冬小麦整个生育期选用当前广泛使用的归一化植被指数(NDVI)反演冬小麦的LAI和在冬小麦不同生长阶段选用不同的植被指数反演冬小麦LAI的结果差异。在冬小麦整个生育期内使用NDVI反演小麦LAI得到的LAI反演值和真实值之间的R2=0.558 5,RMSE=0.320 9。改进的比值植被指数(mSR)适合于反演冬小麦生长前期(拔节期之前)的LAI,得到的LAI反演值和真实值之间的相关系数r=0.728 7,均方根误差RMSE=0.297 1;比值植被指数(SR)适于反演冬小麦生长中期(拔节到抽穗前),得到的LAI反演值和真实值之间的R2=0.654 6,RMSE=0.306 1;NDVI适于反演冬小麦生长后期(抽穗到成熟期)的LAI,得到的LAI反演值和真实值之间的R2=0.679 4,均方根误差RMSE=0.316 4。 研究表明:在冬小麦的不同生育时期,根据地表作物覆盖度的变化和反射率的变化,选择不同的植被指数建立冬小麦LAI的反演模型获得的反演精度均高于在冬小麦整个生育期使用NDVI获得的反演结果。说明在冬小麦的不同生育时期选择不同的植被指数构建LAI的分段反演模型可以改善冬小麦LAI的反演精度。  相似文献   

13.
冬枣光谱数据的灰色关联分析及叶片氮素含量预测   总被引:1,自引:0,他引:1  
采用灰色理论对冬枣叶片氮素含量和光谱反射率之间进行了灰度关联分析,分析结果显示波长560,678以及786 nm处的光谱反射率(G560,R678,NIR786)与冬枣叶片氮素含量之间的灰色关联度最高。利用上述三个特征波段光谱反射率计算得到的植被指数共计9个。进一步运用灰色系统理论分析了九种植被指数与叶片氮素含量的灰色关联度,结果显示:归一化植被指数(NDVI)、绿色比值植被指数(GRVI)、归一化差异绿度植被指数(NDGI)、绿色归一化植被指数(GNDVI)和组合归一化植被指数(CNDVI)等5个指数与叶片氮素含量的灰色关联度较高。利用3个特征波段的光谱反射率和5个关联度较高的植被指数,分别采用最小二乘支持向量机(LS-SVM)以及GM(1,N)模型建立了冬枣叶片氮素含量预测模型。结果表明,采用特征波段光谱反射率(G560,R678,NIR786)建立的冬枣叶片氮素含量GM(1,N)模型的精度最高,预测R2达0.928,验证R2达0.896。  相似文献   

14.
Biomass, leaf area index (LAI) and nitrogen status are important parameters for indicating crop growth potential and photosynthetic productivity in wheat. Nondestructive, quick assessment of leaf dry weight, LAI and nitrogen content is necessary for nitrogen nutrition diagnosis and cultural regulation in wheat production. In order to establish the monitoring model of nitrogen richness in winter wheat of growth anaphase, studying the relationship between the nitrogen richness (NR) containing nitrogen density, LAI and leaf dry weight and the difference of hyperspectral reflectance rates (deltaR), we conducted a comparable experiment with five winter wheat varieties under nitrogen application level of 0, 100, 200 and 400 kg x N x ha(-1). The results indicated the NRs of the different varieties of winter wheat leaves increased with increasing growth stage while in the different nitrogen levels it was sequenced as: NO>N3>N1>N2. Twelve vegetation indices were compared with corresponding NR. The NR had significantly negative correlation to TCARI and VD672 in those vegetation indices, and their correlations (r) arrived at 0.870 and 0.855, respectively. The coefficients of determination (R2) of two models were 0.757 and 0.731 by erecting model with the two indexes and NR Root mean square error (RMSE), relative error (RE) and determination coefficient between measured and estimated NR were employed to test the model reliability and predicting accuracy. Accuracy rates of the models based on TCARI and VD672 achieved 84.56% and 80.13%. The overall results suggested that leaf nitrogen status of growth anaphase in winter wheat has stable relationships with some vegetation indexes, especially index of TCARI and VD672.  相似文献   

15.
基于天宫一号高光谱数据的荒漠化地区稀疏植被参量估测   总被引:1,自引:0,他引:1  
为了精准地估测荒漠化地区的稀疏植被信息,选取内蒙古苏尼特右旗为研究区,以天宫一号高光谱数据为数据源,结合野外实地调查数据,通过归一化植被指数(normalized difference vegetation index, NDVI)和土壤调节植被指数(soil adjusted vegetation index, SAVI)对研究区内的植被覆盖度和生物量进行反演,并对比两种植被指数的优劣。首先,分析了每种波段组合下的植被指数与覆盖度、生物量的相关性,确定了最大相关的波段组合。覆盖度和生物量与NDVI的最大相关系数可达0.7左右,而与SAVI的最大相关系数可达0.8左右。NDVI的最佳波段组合的红光波段中心波长为630 nm,近红外波段的中心波长为910 nm,而SAVI的组合为620和920 nm。其次,分别构建了两种植被指数与覆盖度、生物量之间的线性回归模型,所建模型的R2均能达到0.5以上。SAVI所建模型R2要比NDVI略高,其中植被覆盖度的反演模型R2高达0.59。经留一交叉验证,SAVI所建模型的均方根误差RMSE也比基于NDVI的模型小。结果表明:天宫一号高光谱数据丰富的光谱信息能有效地反映地表植被的真实情况,并且SAVI比NDVI更能较为精准地估测荒漠化地区的稀疏植被信息。  相似文献   

16.
植被叶片叶绿素含量反演的光谱尺度效应研究   总被引:1,自引:0,他引:1  
目前光谱指数方法已被广泛地应用于植被叶绿素含量的反演中,考虑到不同传感器的光谱响应存在差异,研究了光谱尺度效应对光谱指数反演植被叶片叶绿素含量的影响。基于PROSPECT模型模拟了不同叶绿素含量(5~80 μg·cm-2)下的5 nm叶片光谱反射率数据,并利用高斯光谱响应函数将其分别模拟成10~35 nm六种波段宽的光谱数据,再分析评价5~35 nm波段宽下光谱指数与叶片叶绿素含量的相关性、对叶片叶绿素含量变化及对波段宽变化的敏感性。最后,利用波段宽为40~65 nm的反射率数据对光谱指数反演植被叶绿素含量的光谱尺度效应进行验证。结果表明,通用光谱指数(vegetation index based on universal pattern decomposition method, VIUPD)反演叶绿素含量的精度最高,反演值与真实值拟合程度最好;归一化差值植被指数(normalized difference vegetation index, NDVI)和简单比值指数(simple ratio index, SRI)其次,虽然其决定系数R2高达0.89以上,但反演的叶绿素含量值小于真实值;其他光谱指数的反演结果较差。VIUPD对叶绿素含量具有较好的相关性和敏感性,受光谱尺度效应影响较小,具有较好的反演能力,这一结论恰好验证了其“独立于传感器”的特性,同时证明了VIUPD在多源遥感数据反演植被理化参量的研究中具有更好的应用前景。  相似文献   

17.
基于NIR-Red光谱特征空间的作物水分指数   总被引:2,自引:0,他引:2  
水分含量是表征作物水分胁迫生理状况的重要指标,及时有效地监测作物水分含量对于评估作物水分亏缺平衡,指导农业生产灌溉具有重要意义。基于NIR-Red二维光谱特征空间,尝试构建一种新的作物水分监测指数PWI来估算作物水分含量。以冬小麦作物植被水分含量估算为尝试对象。首先,利用地面实测小麦冠层高光谱数据,结合对应卫星光谱响应函数,模拟当前常用卫星HJ-CCD和ZY-3多光谱数据;然后,对基于NIR-Red二维光谱特征空间的现有植被指数PDI(垂直干旱指数)和PVI(垂直植被指数)进行改进,通过比值变换的方法构建新的指数PWI来估算冬小麦植株含水量(VWC)。结果显示:基于模拟的HJ-CCD和ZY-3卫星宽波段多光谱数据生成的PWI估算小麦VWC具有良好的效果,R2分别达到0.684和0.683, 均达到了极显著水平。利用检验样本得到冬小麦VWC估算的R2和RMSE分别为0.764和0.764,3.837%和3.840%,这表明应用提出的新指数PWI估测作物含水量具有一定可行性。同时,也为当前利用主要国产卫星遥感数据HJ-CCD和ZY-3开展作物水分遥感监测应用提供了一种新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号