首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption, desorption, and diffusion kinetics of N2 on thick (up to approximately 9 microm) porous films of amorphous solid water (ASW) films were studied using molecular beam techniques and temperature programmed desorption. Porous ASW films were grown on Pt(111) at low temperature (<30 K) from a collimated H2O beam at glancing incident angles. In thin films (<1 microm), the desorption kinetics are well described by a model that assumes rapid and uniform N2 distribution throughout the film. In thicker films (>1 microm), N2 adsorption at 27 K results in a nonuniform distribution, where most of N2 is trapped in the outer region of the film. Redistribution of N2 can be induced by thermal annealing. The apparent activation energy for this process is approximately 7 kJ/mol, which is approximately half of the desorption activation energy at the corresponding coverage. Preadsorption of Kr preferentially adsorbs onto the highest energy binding sites, thereby preventing N2 from trapping in the outer region of the film which facilitates N2 transport deeper into the porous film. Despite the onset of limited diffusion, the adsorption kinetics are efficient, precursor mediated, and independent of film thickness. An adsorption mechanism is proposed, in which a high-coverage N2 front propagates into a pore by the rapid transport of physisorbed second layer N2 species on top of the first surface bound layer.  相似文献   

2.
The influence of surface morphology/porosity on the desorption kinetics of weakly bound species was investigated by depositing D2 on amorphous solid water (ASW) films grown by low temperature vapor deposition under various conditions and with differing thermal histories. A broad distribution of binding energies of the D2 monolayer on nonporous and porous ASW was measured experimentally and correlated by theoretical calculations to differences in the degree of coordination of the adsorbed H2 (D2) to H2O molecules in the ASW depending on the nature of the adsorption site, i.e., surface valleys vs surface peaks in a nanoscale rough film surface. For porous films, the effect of porosity on the desorption kinetics was observed to be a reduction in the desorption rate with film thickness and a change in peak shape. This can be partly explained by fast diffusion into the ASW pore structure via a simple one-dimensional diffusion model and by a change in binding energy statistics with increasing total effective surface area. Furthermore, the D2 desorption kinetics on thermally annealed ASW films were investigated. The main effect was seen to be a reduction in porosity and in the number of highly coordinated binding sites with anneal temperature due to ASW restructuring and pore collapse. These results contribute to the understanding of desorption from porous materials and to the development of correct models for desorption from and catalytic processes on dust grain surfaces in the interstellar medium.  相似文献   

3.
4.
Thermal desorption spectroscopy is employed to examine transport mechanisms in structured, nanoscale films consisting of labeled amorphous solid water (ASW, H(2)(18)O, H(2)(16)O) and organic spacer layers (CCl(4), CHCl(3)) prior to ASW crystallization (T approximately 150-160 K). Self-transport is studied as a function of both the ASW layer and the organic spacer layer film thickness, and the effectiveness of these spacer layers as a bulk diffusion "barrier" is also investigated. Isothermal desorption measurements of structured films are combined with gas uptake measurements (CClF(2)H) to investigate water self-transport and changes in ASW film morphology during crystallization and annealing. CCl(4) desorption is employed as a means to investigate the effects of ASW film thickness and heating schedule on vapor-phase transport. Combined, these results demonstrate that the interlayer mixing observed near T approximately 150-160 K is inconsistent with a mechanism involving diffusion through a dense phase; rather, we propose that intermixing occurs via vapor-phase transport through an interconnected network of cracks/fractures created within the ASW film during crystallization. Consequently, the self-diffusivity of ASW prior to crystallization (T approximately 150-160 K) is significantly smaller than that expected for a "fragile" liquid, indicating that water undergoes either a glass transition or a fragile-to-strong transition at a temperature above 160 K.  相似文献   

5.
Temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) are used to investigate the crystallization kinetics and measure the excess free energy of metastable amorphous solid water films (ASW) of H(2)O and D(2)O grown using molecular beams. The desorption rates from the amorphous and crystalline phases of ASW are distinct, and as such, crystallization manifests can be observed in the TPD spectrum. The crystallization kinetics were studied by varying the TPD heating rate from 0.001 to 3 K/s. A coupled desorption-crystallization kinetic model accurately simulates the desorption spectra and accurately predicts the observed temperature shifts in the crystallization. Isothermal crystallization studies using RAIRS are in agreement with the TPD results. Furthermore, highly sensitive measurements of the desorption rates were used to determine the excess free energy of ASW near 150 K. The excess entropy obtained from these data is consistent with there being a thermodynamic continuity between ASW and supercooled liquid water.  相似文献   

6.
Guest-host interactions have been examined experimentally for amorphous solid water (ASW) films doped with CO2 or N2O. The main diagnostics are Fourier transform infrared (FTIR) spectroscopy and temperature programmed desorption (TPD). ASW films deposited at 90 K are exposed to a dopant, and the first molecules that attach to a film enter its bulk until it is saturated with them. Subsequent dopant adsorption results in crystal growth atop the ASW film. There are distinct spectral signatures for these two cases: LO and TO vibrational modes for the crystal overlayer, and an easily distinguished peak for dopant molecules that reside within the ASW film. Above 105 K, the dopant surface layer desorbs fully. Some dopants residing within the ASW film remain until 155 K, at which point the ASW-to-crystalline-ice transition occurs, expelling essentially all of the dopant. No substantial differences are observed for CO2 versus N2O. It is shown that annealing an ASW film to 130 K lowers the film's capacity to include dopants by a factor of approximately 3, despite the fact that the ASW spectral feature centered at approximately 3250 cm(-1) shows no discernible change. Sandwiches were prepared: ASW-dopant-ASW etc., with the dopant layer displaying crystallinity. Raising these samples past 105 K resulted in the expulsion of essentially all of the crystalline dopant. What remained displayed the same spectral signature as the molecules that entered the bulk following adsorption at the surface. It is concluded that the adsorption sites, though prepared differently, have a lot in common. Dangling OH bonds were observed. When they interacted with a dopant, they underwent a red shift of approximately 50 cm(-1). This is in qualitative agreement with studies that have been carried out with weakly bound binary complexes. As a result of this study, a fairly complete, albeit qualitative, picture is in place for the adsorption, binding, and transport of CO2 and N2O in ASW films.  相似文献   

7.
We have examined transport mechanisms in amorphous solid water (ASW) by studying thermal desorption of layered nanoscale films of CCl4 and labeled ASW. The interlayer mixing observed near T approximately 150-160 K is inconsistent with a mechanism involving diffusion through a dense phase. Instead, intermixing occurs via vapor-phase transport through an interconnected porous network created within the film during crystallization. As a consequence, the self-diffusivity of ASW is significantly smaller than previously thought, indicating that water undergoes either a glass transition or a fragile-to-strong transition at a temperature above 160 K.  相似文献   

8.
Interactions of 13CO2 guest molecules with vapor-deposited porous H2O ices have been examined using temperature-programmed desorption (TPD) and Fourier transform infrared (FTIR) techniques. Specifically, the trapping and release of 13CO2 by amorphous solid water (ASW) has been studied. The use of 13CO2 eliminates problems with background CO2. Samples were prepared by (i) depositing 13CO2 on top of ASW, (ii) depositing 13CO2 underneath ASW, and (iii) codepositing 13CO2 and H2O during ASW formation. Some of the deposited 13CO2 becomes trapped when the ice film is annealed. The amount of 13CO2 trapped in the film depends on the deposition method. The release of trapped molecules occurs in two stages. The majority of the trapped 13CO2 escapes during the ASW-to-cubic ice phase transition at 165 K, and the rest desorbs together with the cubic ice film at 185 K. We speculate that the presence of 13CO2 at temperatures up to 185 K is due to 13CO2 that is trapped in cavities within the ASW film. These cavities are similar to ones that trap the 13CO2 that is released during crystallization. The difference is that 13CO2 that remains at temperatures up to 185 K does not have access to escape pathways to the surface during crystallization.  相似文献   

9.
The low-energy, electron-stimulated production of molecular oxygen from thin amorphous solid water (ASW) films adsorbed on Pt(111) is investigated. For ASW coverages less than approximately 60 ML, the O(2) electron-stimulated desorption (ESD) yield depends on coverage in a manner that is very similar to the H(2) ESD yield. In particular, both the O(2) and H(2) ESD yields have a pronounced maximum at approximately 20 ML due to reactions at the Pt/water interface. The O(2) yield is dose dependent and several precursors (OH, H(2)O(2), and HO(2)) are involved in the O(2) production. Layered films of H(2) (16)O and H(2) (18)O are used to profile the spatial distribution of the electron-stimulated reactions leading to oxygen within the water films. Independent of the ASW film thickness, the final reactions leading to O(2) occur at or near the ASW/vacuum interface. However, for ASW coverages less than approximately 40 ML, the results indicate that dissociation of water molecules at the ASW/Pt interface contributes to the O(2) production at the ASW/vacuum interface presumably via the generation of OH radicals near the Pt substrate. The OH (or possibly OH(-)) segregates to the vacuum interface where it contributes to the reactions at that interface. The electron-stimulated migration of precursors to the vacuum interface occurs via transport through the hydrogen bond network of the ASW without motion of the oxygen atoms. A simple kinetic model of the nonthermal reactions leading to O(2), which was previously used to account for reactions in thick ASW films, is modified to account for the electron-stimulated migration of precursors.  相似文献   

10.
Interactions of acetone with the silicon surfaces terminated with hydrogen, hydroxyl, and perfluorocarbon are investigated; results are compared to those on amorphous solid water (ASW) to gain insights into the roles of hydrogen bonds in surface diffusion and hydration of acetone adspecies. The surface mobility of acetone occurs at ~60 K irrespective of the surface functional groups. Cooperative diffusion of adspecies results in a 2D liquid phase on the H- and perfluorocarbon-terminated surfaces, whereas cooperativity tends to be quenched via hydrogen bonding on the OH-terminated surface, thereby forming residues that diffuse slowly on the surface after evaporation of the physisorbed species (i.e., 2D liquid). The interaction of acetone adspecies on the non-porous ASW surface resembles that on the OH-terminated Si surface, but the acetone molecules tend to be hydrated on the porous ASW film, as evidenced by their desorption during the glass-liquid transition and crystallization of water. The roles of micropores in hydration of acetone molecules are discussed from comparison with the results using mesoporous Si substrates.  相似文献   

11.
Reflection absorption infrared spectroscopy (RAIRS) and temperature programed desorption (TPD) have been used to probe the adsorption and desorption of ethanol on highly ordered pyrolytic graphite (HOPG) at 98 K. RAIR spectra for ethanol show that it forms physisorbed multilayers on the surface at 98 K. Annealing multilayer ethanol ices (exposures >50 L) beyond 120 K gives rise to a change in morphology before crystallization within the ice occurs. TPD shows that ethanol adsorbs and desorbs molecularly on the HOPG surface and shows four different species in desorption. At low coverage, desorption of monolayer ethanol is observed and is described by first-order kinetics. With increasing coverage, a second TPD peak is observed at a lower temperature, which is assigned to an ethanol bilayer. When the coverage is further increased, a second multilayer, less strongly bound to the underlying ethanol ice film, is observed. This peak dominates the TPD spectra with increasing coverage and is characterized by fractional-order kinetics and a desorption energy of 56.3+/-1.7 kJ mol(-1). At exposures exceeding 50 L, formation of crystalline ethanol is also observed as a high temperature shoulder on the TPD spectrum at 160 K.  相似文献   

12.
The adsorption of water on FeO(111) is investigated using temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS). Well-ordered 2 ML thick FeO(111) films are grown epitaxially on a Pt(111) substrate. Water adsorbs molecularly on FeO(111) and desorbs with a well resolved monolayer peak. IRAS measurements as a function of coverage are performed for water deposited at 30 and 135 K. For all coverages (0.2 ML and greater), the adsorbed water exhibits significant hydrogen bonding. Differences in IRAS spectra for water adsorbed at 30 and 135 K are subtle but suggest that water adsorbed at 135 K is well ordered. Monolayer nitrogen TPD spectra from water covered FeO(111) surfaces are used to investigate the clustering of the water as a function of deposition or annealing temperature. Temperature dependent water overlayer structures result from differences in water diffusion rates on bare FeO(111) and on water adsorbed on FeO(111). Features in the nitrogen TPD spectra allow the monolayer wetting and 2-dimensional (2D) ordering of water on FeO(111) to be followed. Voids in a partially disordered first water layer exist for water deposited below 120 K and ordered 2D islands are found when depositing water above 120 K.  相似文献   

13.
Dynamics of water absorption from a saturated vapor and water desorption into dry air for Nafion 1100 EW ionomers have been measured for film thicknesses between 51 and 606 microm and at temperatures ranging from 30 to 90 degrees C. Water absorption and desorption exhibit two distinct non-Fickian characteristics: (1) desorption is 10 times faster than absorption and (2) the normalized mass change does not collapse to a single master curve when plotted against time normalized by membrane thickness squared, t/l2, for either absorption or desorption. Water desorption data were fit well by a model in which diffusion is rapid and interfacial mass transport resistance is the rate-limiting process for water loss. Water absorption is described by a two-stage process. At early times, interfacial mass transport controls water absorption, and at longer times, water absorption is controlled by the dynamics of polymer swelling and relaxation.  相似文献   

14.
Despite considerable attention in the literature being given to the desorption behaviour of smaller volatiles, the thermal properties of complex organics, such as ethanol (C(2)H(5)OH), which are predicted to be formed within interstellar ices, have yet to be characterized. With this in mind, reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to probe the adsorption and desorption of C(2)H(5)OH deposited on top of water (H(2)O) films of various thicknesses grown on highly oriented pyrolytic graphite (HOPG) at 98 K. Unlike many other molecules detected within interstellar ices, C(2)H(5)OH has a comparable sublimation temperature to H(2)O and therefore gives rise to a complicated desorption profile. RAIRS and TPD show that C(2)H(5)OH is incorporated into the underlying ASW film during heating, due to a morphology change in both the C(2)H(5)OH and H(2)O ices. Desorption peaks assigned to C(2)H(5)OH co-desorption with amorphous, crystalline (CI) and hexagonal H(2)O-ice phases, in addition to C(2)H(5)OH multilayer desorption are observed in the TPD. When C(2)H(5)OH is deposited beneath ASW films, or is co-deposited as a mixture with H(2)O, complete co-desorption is observed, providing further evidence of thermally induced mixing between the ices. C(2)H(5)OH is also shown to modify the desorption of H(2)O at the ASW-CI phase transition. This behaviour has not been previously reported for more commonly studied volatiles found within astrophysical ices. These results are consistent with astronomical observations, which suggest that gas-phase C(2)H(5)OH is localized in hotter regions of the ISM, such as hot cores.  相似文献   

15.
The 266 nm photodissociation of bromoform adsorbed on an amorphous solid water (ASW) layer has been investigated for the first time under well-defined ultrahigh vacuum conditions. Time-of-flight (TOF) measurements indicate direct release of gas-phase Br, CHBr2, Br2, and CHBr species, with potential implications for stratospheric chemistry. Furthermore, new, ice-surface-mediated C-C (C2H2Br2) and C-O (CHBrO, CO) species are revealed in postirradiation temperature programmed desorption (TPD) and reflection absorption infrared (RAIR) spectra. A cross section of approximately 5 x 10(-20) cm2 is determined for bromoform photodissociation at 266 nm based on the integrated area of both the TOF spectra of Br and Br2 and the postirradiation TPD curves of CHBr3. The involvement of the free, non-hydrogen-bonded water groups at the ASW surface in the formation of the photoproducts is evident from the RAIRS results.  相似文献   

16.
The interactions of cyanide species with a copper (001) surface were studied with temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Adsorbed cyanide species (CN(a)) undergo recombinative desorption evolving molecular cyanogen (C(2)N(2)). As the adsorbed CN species charge upon adsorption, mutually repulsive dipolar interactions lead to a marked desorption energy reduction with increasing CN(a) coverages. Two new TPD analysis approaches were developed, which used only accurately discernible observables and which do not assume constant desorption energies, E(d), and pre-exponential values, ν. These two approaches demonstrated a linear variation of E(d) with instantaneous coverage. The first approach involved an analysis of the variations of desorption peak asymmetry with initial CN coverages. The second quantitative approach utilized only temperatures and intensities of TPD peaks, together with deduced surface coverages at the peak maxima, also as a function of initial surface coverages. Parameters derived from the latter approach were utilized as initial inputs for a comprehensive curve fit analysis technique. Excellent fits for all experimental desorption curves were produced in simulations. The curve fit analysis confirms that the activation energy of desorption of 170-180 kJ/mol at low coverage decreases by up to 14-15 kJ/mol at CN saturation.  相似文献   

17.
采用程序升温脱附(TPD)技术测定了苯、噻吩和正辛烷在NaY上以不同升温速率升温时的TPD谱图. 利用TPD谱图的峰形和其微分曲线判断了程序升温脱附过程中的脱附级数. 提出了一种利用最小二乘法计算吸附剂/催化剂的脱附活化能及其动力学参数的方法. 以这些TPD谱图为基础, 分别采用传统TPD计算模型、最小二乘法以及一阶微分曲线法计算了苯、噻吩和正辛烷在NaY上的脱附活化能和动力学参数. 结果表明, 最小二乘法对在不同线性升温速率时的程序升温脱附活化能的计算结果是一致的.  相似文献   

18.
Electrodeposited nanoporous ZnO/eosin Y hybrid films have been investigated in view of their potential applications in dye-sensitized solar cells and supercapacitors. Intensity-modulated photocurrent spectra were measured at different electrode potentials at films of different thicknesses. It was found that the results represent either the RC constant of the cell and surface recombination of photogenerated holes with electrons or the diffusion of photogenerated electrons and are dependent on the electron concentration in the ZnO, which is influenced by the film thickness, the electrode potential, and the light intensity. The results suggest that the porosity of the electrodeposited ZnO increases with the film thickness and the films therefore consist of two parts, a less porous part deposited in the first few minutes that exhibits field-driven electron transport and a more porous outer part where electron transport is by diffusion. The results are supported by frequency-dependent capacitance measurements, which also show that the material is suitable for supercapacitors.  相似文献   

19.
High-quality temperature-programmed desorption (TPD) measurements of n-butane from MgO(100) have been made for a large number of initial butane coverages (0-3.70 ML, ML-monolayers) and a wide range of heating ramp rates (0.3-10 K/s). We present a TPD analysis technique which allows the coverage-dependent desorption energy to be accurately determined by mathematical inversion of a TPD spectrum, assuming only that the preexponential factor (prefactor) is coverage independent. A variational method is used to determine the prefactor that minimizes the difference between a set of simulated TPD spectra and corresponding experimental data. The best fit for butane desorption from MgO is obtained with a prefactor of 10(15.7+/-1.6) s(-1). The desorption energy is 34.9+/-3.4 kJ/mol at 0.5-ML coverage, and varies with coverage approximately as Ed(theta)=34.5+0.566theta+8.37 exp(-theta/0.101). Simulations based on these results can accurately reproduce TPD experiments for submonolayer initial coverages over a wide range of heating ramp rates (0.3-10 K/s). Advantages and limitations of this method are discussed.  相似文献   

20.
Physisorption of N(2), O(2), and CO was studied on fully oxidized TiO(2)(110) using beam reflection and temperature-programmed desorption (TPD) techniques. Sticking coefficients for all three molecules are nearly equal (0.75 +/- 0.05) and approximately independent of coverage suggesting that adsorption occurs via a precursor-mediated mechanism. Excluding multilayer coverages, the TPD spectra for all three adsorbates exhibit three distinct coverage regimes that can be interpreted in accord with previous theoretical studies of N(2) adsorption. At low coverages (0-0.5 N(2)/Ti(4+)), N(2) molecules bind head-on to five-coordinated Ti(4+) ions. The adsorption occurs preferentially on the Ti(4+) sites that do not have neighboring adsorbates. This arrangement minimizes the repulsive interactions between the adsorbed molecules along the Ti(4+) rows resulting in a relatively small shift of the TPD peak (105 --> 90 K) with increasing coverage. At higher N(2) coverages (0.5-1.0 N(2)/Ti(4+)) the nearest-neighbor Ti(4+) sites become occupied. The close proximity of the adsorbates results in strong repulsion thus giving rise to a significant shift of the TPD leading edges (90 --> 45 K) with increasing coverage. For N(2)/Ti(4+) > 1, an additional low-temperature peak (approximately 43 K) is present and is ascribed to N(2) adsorption on bridge-bonded oxygen rows. The results for O(2) and CO are qualitatively similar. The repulsive adsorbate-adsorbate interactions are largest for CO, most likely due to alignment of CO dipole moments. The coverage-dependent binding energies of O(2), N(2), and CO are determined by inverting TPD profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号