首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study an effective theory beyond the standard model(SM) where either of the two additional gauge singlets, a Majorana fermion and a real scalar, constitutes all or some fraction of dark matter. In particular, we focus on the masses of the two singlets in the range of O(10) MeV-O(10) GeV with a neutrino portal interaction, which plays an important role not only in particle physics but also in cosmology and astronomy. We point out that the thermal dark matter abundance can be explained by(co-)annihilation, where the dark matter with a mass greater than 2 GeV can be tested in future lepton colliders, CEPC, ILC, FCC-ee and CLIC, in the light of the Higgs boson invisible decay. When the gauge singlets are lighter than O(100) MeV, the interaction can affect the neutrino propagation in the universe due to its annihilation with cosmic background neutrino into the gauge singlets. Although in this case it can not be the dominant dark matter, the singlets are produced by the invisible decay of the Higgs boson at such a rate which is fully within reach of future lepton colliders. In particular, a high energy cutoff of cosmic-ray neutrino,which may account for the non-detection of Greisen-Zatsepin-Kuzmin(GZK) neutrino or the non-observation of the Glashow resonance, can be set. Interestingly, given the cutoff and the mass(range) of WIMPs, a neutrino mass can be"measured" kinematically.  相似文献   

2.
We show how to enlarge the νMSM (the minimal extension of the Standard Model by three right-handed neutrinos) to incorporate inflation and provide a common source for electroweak symmetry breaking and for right-handed neutrino masses. In addition to inflation, the resulting theory can explain simultaneously dark matter and the baryon asymmetry of the Universe; it is consistent with experiments on neutrino oscillations and with all astrophysical and cosmological constraints on sterile neutrino as a dark matter candidate. The mass of inflaton can be much smaller than the electroweak scale.  相似文献   

3.
4.
A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal activeneutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a2 type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.  相似文献   

5.
6.
Motivated by the Super-Kamiokande atmospheric neutrino data, we discuss possible textures for Majorana and Dirac neutrino masses within the see-saw framework. There are two main purposes of this paper: first, to gain intuition into this area from a purely phenomenological analysis, and second, to explore to what extent it may be realized in a specific model. We comment initially on the simplified two-generation case, emphasizing that large mixing is not incompatible with a large hierarchy of mass eigenvalues. We also emphasize that renormalization-group effects may amplify neutrino mixing, and we present semi-analytic expressions for estimating this amplification. Several examples are then given of three-family neutrino mass textures, which may also accommodate the persistent solar neutrino deficit, with different assumptions for the neutrino Dirac mass matrices. We comment on a few features of neutrino mass textures arising in models with a U(1) flavour symmetry. Finally, we discuss the possible pattern of neutrino masses in a “realistic” flipped SU(5) model derived from string theory, illustrating how a desirable pattern of mixing may emerge. Both small- or large-angle MSW solutions are possible, while a hierarchy of neutrino masses appears more natural than near-degeneracy. This model contains some unanticipated features that may be relevant in other models also: The neutrino Dirac matrices may not be related closely to the quark mass matrices, and the heavy Majorana states may include extra gauge-singlet fields. Received: 6 November 1998 / Published online: 18 June 1999  相似文献   

7.
Starting from a Dirac equation for massless neutrino in a 5D Ricci-flat background metric, we obtain the effective 4D equation for massive neutrino in a Schwarzschild-de Sitter (SdS) background metric from an extended SdS 5D Ricci-flat metric. We use the fact that the spin connection is defined to an accuracy of a vector, so that the covariant derivative of the spinor field is strongly dependent of the background geometry. We show that the mass of the neutrino can be induced from the extra space-like dimension.  相似文献   

8.
The aim of the KArlsruhe TRItium Neutrino experiment KATRIN is the determination of the absolute neutrino mass scale down to 0.2 eV, with essentially smaller model dependence than from cosmology and neutrinoless double beta decay. For this purpose, the integral electron energy spectrum is measured close to the endpoint of molecular tritium beta decay. The endpoint, together with the neutrino mass, should be fitted from the KATRIN data as a free parameter. The right-handed couplings change the electron energy spectrum close to the endpoint, therefore they have some effect also to the precise neutrino mass determination. The statistical calculations show that, using the endpoint as a free parameter, the unaccounted right-handed couplings constrained by many beta decay experiments can change the fitted neutrino mass value, relative to the true neutrino mass, by not larger than about 5-10%. Using, incorrectly, the endpoint as a fixed input parameter, the above change of the neutrino mass can be much larger, order of 100%, and for some cases it can happen that for large true neutrino mass value the fitted neutrino mass squared is negative. Publications using fixed endpoint and presenting large right-handed coupling effects to the neutrino mass determination are not relevant for the KATRIN experiment.  相似文献   

9.
We examine a phenomenon recently predicted by numerical simulations of supernova neutrino flavor evolution: the swapping of supernova nu(e) and nu(mu,tau) energy spectra below (above) energy E(C) for the normal (inverted) neutrino mass hierarchy. We present the results of large-scale numerical calculations which show that in the normal neutrino mass hierarchy case, E(C) decreases as the assumed effective 2x2 vacuum nu(e)<==>nu(mu,tau) mixing angle (approximately theta13) is decreased. In contrast, these calculations indicate that E(C) is essentially independent of the vacuum mixing angle in the inverted neutrino mass hierarchy case. With a good neutrino signal from a future galactic supernova, the above results could be used to determine the neutrino mass hierarchy even if theta13 is too small to be measured by terrestrial neutrino oscillation experiments.  相似文献   

10.
CP violation in the lepton sector, and other aspects of neutrino physics, are studied within a high scale supersymmetry model. In addition to the sneutrino vacuum expectation values(VEVs), the heavy vector-like triplet also contributes to neutrino masses. Phases of the VEVs of relevant fields, complex couplings, and Zino mass are considered.The approximate degeneracy of neutrino masses m_(ν1) and m_(ν2) can be naturally understood. The neutrino masses are then normal ordered, ~ 0.020 eV, 0.022 eV, and 0.054 eV. Large CP violation in neutrino oscillations is favored. The effective Majorana mass of the electron neutrino is about 0.02 eV.  相似文献   

11.
The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/c 2 (90% C.L.) on the neutrino rest mass.  相似文献   

12.
Early black hole formation in a core-collapse supernova will abruptly truncate the neutrino fluxes. The sharp cutoff can be used to make model-independent time-of-flight neutrino mass tests. Assuming a neutrino luminosity of 10(52) erg/s per flavor at cutoff and a distance of 10 kpc, Super-Kamiokande can detect an electron neutrino mass as small as 1.8 eV, and the proposed OMNIS detector can detect mu and tau neutrino masses as small as 6 eV. We present the first technique with direct sensitivity to eV-scale mu and tau neutrino masses.  相似文献   

13.
14.
Multi-messenger gravitational wave (GW) observation for binary neutron star merger events could provide a rather useful tool to explore the evolution of the Universe. In particular, for the third-generation GW detectors, i.e. the Einstein Telescope (ET) and the Cosmic Explorer (CE), proposed to be built in Europe and the U.S., respectively, lots of GW standard sirens with known redshifts could be obtained, which would exert great impacts on the cosmological parameter estimation. The total neutrino mass could be measured by cosmological observations, but such a measurement is model-dependent and currently only gives an upper limit. In this work, we wish to investigate whether the GW standard sirens observed by ET and CE could help improve the constraint on the neutrino mass, in particular in the interacting dark energy (IDE) models. We find that the GW standard siren observations from ET and CE can only slightly improve the constraint on the neutrino mass in the IDE models, compared to the current limit. The improvements in the IDE models are weaker than those in the standard cosmological model. Although the limit on neutrino mass can only be slightly updated, the constraints on other cosmological parameters can be significantly improved by using the GW observations.  相似文献   

15.
We argue that it is certainly unusual, but not entirely anathema to present theoretical thinking that a breakdown of CPT invariance (and even Lorentz symmetry) might occur at some scale, be it the Planck mass or even the grand unification point. We discuss how the sensitivity of existing tests of CPT invariance can be greatly improved in neutrino oscillations irrespective of whether CP is conserved or not. Also the source of a possible CPT breakdown can be further analyzed in such experiments.  相似文献   

16.
《Physics letters. A》1998,239(6):373-377
It is suggested that it is possible to define an equivalent electric charge for an intense laser pulse (which can be described as a photon bunch) propagating in a plasma. It is also shown that this equivalent charge can be a source of new radiation processes in an inhomogeneous plasma. The results are extended to the case of a neutrino bunch, which is coupled to the plasma by weak nuclear forces.  相似文献   

17.
We point out that although the neutrino mass is finite,the left-handed neutrino density still dominates over the righthanded one in the universe unless there exists one or more elementary fernions (quark or lepton) whose mass is larger than 106 GeV. or MWR/MWL≤102. (MWLand MWR are the left and right handed intermediate boson respectively.If there exists neutrino the mass of which is about 34 ev. as indicated in some experiments, then one can conclude that the total neutrino mass of the universe s,bvld contribute abput 99%. to the whole masses and lead to the closeness of the universe.This conclusion can be brought to the agreement of all observation datd which have been-obtained so far. A mass limit of all species of neutrinos obtained by reexamining all data is ≤ 200 eV.  相似文献   

18.
Collective neutrino flavor transformations deep inside a supernova are sensitive to the neutrino mass hierarchy even at extremely small values of theta_(13). Exploiting this effect, we show that comparison of the antineutrino signals from a galactic supernova in two megaton class water Cherenkov detectors, one of which is shadowed by Earth, will enable us to distinguish between the hierarchies if sin(2)theta_(13) < or approximately 10(-5), where long baseline neutrino experiments would be ineffectual.  相似文献   

19.
We investigate non-standard neutrino interactions (NSIs) in the Zee–Babu model. The size of NSIs predicted by this model is obtained from a full scan over the parameter space, taking into account constraints from low-energy experiments such as searches for lepton flavor violation (LFV) and the requirement to obtain a viable neutrino mass matrix. The dependence on the scale of new physics as well as on the type of the neutrino mass hierarchy is discussed. We find that NSIs at the source of a future neutrino factory may be at an observable level in the νeντ and/or νμντ channels. In particular, if the doubly charged scalar of the model has a mass in reach of the LHC and if the neutrino mass hierarchy is inverted, a highly predictive scenario is obtained with observable signals at the LHC, in upcoming neutrino oscillation experiments, in LFV processes, and for NSIs at a neutrino factory.  相似文献   

20.
Some of the basic problems in neutrino physics, such as new energy scales, the enormous gap between the neutrino masses and the lightest charged fermion mass, and the possible existence of sterile neutrinos in the eV mass range are studied in the local gauge group SU L (4)×U(1) for electroweak unification, which does not contain fermions with exotic electric charges. It is shown that the neutrino mass spectrum can be decoupled from that of the other fermions. The further normal seesaw mechanism for neutrinos, with right-handed neutrino Majorana masses of order MM weak as well a new eV-scale can be accommodated. The eV-scale seesaw may manifest itself in experiments like the Liquid Scintillation Neutrino Detector (LSND) and MiniBooNE (MB) experimental results and future neutrino experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号