首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three phase Pebax~? MH 1657/PEG-ran-PPG/CuBTC(polymer/liquid/solid) was successfully deposited as a selective layer on a porous Polysulfone(PSF) support. In fact, the beneficial properties of PEG(high selectivity) with those of PPG(high permeability, amorphous) have been combined with superior properties of mixed matrix membrane(MMMs). The membranes were characterized by DSC, TGA and SEM, while CuBTC was characterized by CO_2 and CH_4adsorption test. Statistically based experimental design(central composite design, CCD) was applied to analyze and optimize the effect of PEG-ran-PPG(10–50 wt%) and CuBTC(0–20 wt%) mass contents on the CO_2 permeance and CO_2/CH_4 ideal selectivity. Based on the regression coefficients of the obtained models, the CO_2 permeance was notably influenced by PEG-ran-PPG,while CuBTC has the most significant effect on the CO_2/CH_4 ideal selectivity. Under the optimum conditions(PEG-ran-PPG: 32.76 wt% and CuBTC: 20 wt%), nearly 620% increase in the CO_2 permeance and43% enhancement in the CO_2/CH_4 ideal selectivity was observed compared to the neat Pebax. The effect of pressure(3, 9 and 15 bar) on the pure and mixed gas separation performance of the composite membranes was also investigated. The high solubility of CO_2 in the membranes resulted in the enhancement of CO_2 permeability with increase in gas pressure.  相似文献   

2.
Copolyimide membranes with different poly(ethylene oxide) (PEO) content (from 28 to 68 wt percent, wt.%) have been thermally treated at different temperatures (from 200 to 300 °C) to evaluate the effect of the thermal protocol on the gas transport properties to O2, N2, CO2 and CH4. The permeability coefficients (P) for all gases increased after the thermal treatment of the membranes and were related to the PEO content, being this enhancement higher for membranes with lower PEO content. Thermal treatment at 300 °C of the membranes with 28 and 43 wt.% of PEO, yielded more productive materials for CO2/N2 separation since the permeability coefficients for CO2 (PCO2PCO2) increased 9.8 and 3.2 times, respectively, while the selectivity just suffered a small drop (less than 1.3 times in both cases). Overall, the membrane with 43 wt.% of PEO exhibited the best performance, with a PCO2PCO2 of 78 Barrer and a CO2/N2 selectivity of 52. For CO2/CH4 separation, an increase on selectivity of 1.8 times was obtained in the copolyimide with 43 wt.% of PEO, reaching the selectivity a value of 18. This enhancement of productivity has been associated to an improvement of phase segregation.  相似文献   

3.
Organic-inorganic hybrid materials were prepared by reacting 3-isocyanatopropyltriethoxysilane (IPTS) with hydroxyl terminated poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG) and poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) (PEPG), followed by hydrolysis and condensation with acid catalysis. Composite membranes have been obtained by casting hybrid sol on the microporous polysulfone substrate. The membranes were characterized by Fourier transform infrared (FT-IR), 13C NMR and 29Si NMR. The permeability coefficients of N2, O2, CH4 and CO2 were measured by variable volume method. The gas permeability coefficients increase with increasing molecular weight of the polyethers. For the membranes containing PEG and PEPG, the higher values of CO2 permeability coefficients and CO2/N2 separation factors are due to the presence of ethylene oxide segments. In case of PEPG membranes, molecular weight has more influence on CO2 permeability than the effect of facilitation by ethylene oxide. The addition of TEOS into hybrid sol results in the decrease of all the gas permeability and does not affect the gas selectivity. PEG2000 membrane display the most performance among the hybrid membranes investigated here. The best values observed are CO2 permeability of 94.2 Barrer with selectivity of 38.3 for CO2/N2 and 15.6 for CO2/CH4.  相似文献   

4.
The effect of polyethyleneglycol (PEG) on gas permeabilities and selectivities was investigated in a series of miscible cellulose acetate (CA) blend membranes. The permeabilities of CO2, H2, O2, CH4, N2 were measured at temperatures from 30 to 80°C and pressures from 20 to 76 cmHg using a manometric permeation apparatus. It was determined that the blend membrane having 10 wt% PEG20000 exhibited higher permeability for CO2 and higher permselectivity for CO2 over N2 and CH4 than those of the membranes which contained 10% PEG of the molecular weight in the range 200–6000. The CA blend containing 60 wt% PEG20000 showed that its permeability coefficients of CO2 and ideal separation factors for CO2 over N2 reached above 2 × 10−8 [cm3 (STP) cm/cm2 s cmHg] and 22, respectively, at 70°C and 20 cmHg. Based on the data of gas permeability coefficients, time lags and characterization of the membranes, it is proposed that the apparent solubility coefficients of all CA and PEG blend membranes for CO2 were lower than those of the CA membrane. However, almost all the blend membranes containing PEG20000 showed higher apparent diffusivity coefficients for CO2, resulting in higher permeability coefficients of CO2 with relation to those of the CA membrane. It is attributed to the high diffusivity selectivities of CA and PEG20000 blend membranes that their ideal separation factors for CO2 over N2 were higher than those of the CA membrane in the range 50–80°C, even though the ideal separation factors of almost all PEG blend membranes for CO2 over CH4 became lower than those of the CA membrane over nearly the full range from 30° to 80°C.  相似文献   

5.
In this study, graphene nanosheets (GNs) were incorporated into polyethersulfone (PES) by phase inversion approach for preparing PES-GNs mixed matrix membranes (MMMs). To investigate the impact of filler content on membrane surface morphology, thermal stability, chemical composition, porosity and mechanical properties, MMMs were constructed with various GNs loadings (0.01, 0.02, 0.03, and 0.04 wt%). ?The performance of prepared MMMs was tested for separation and selectivity of CO2, N2, H2 and CH4 gases at various pressures from 1 to 6 bar and temperature varying from 20 to 60 °C. It was observed that, compared to the pristine PES membrane, the prepared MMMs significantly improved the gas separation and selectivity performance with adequate mechanical stability. The permeability of CO2, N2, H2 and CH4 for the PES + 0.04 wt% GNs increases from 9 to 2246, 11 to 2235, 9 to 7151, and 3 to 4176 Barrer respectively, as compared with pure PES membrane at 1 bar and 20 °C due to improving the membrane absorption and porosity. In addition, by increasing the pressure, the permeability and selectivity of CO2, N2, H2 and CH4 are increased due to the increased driving force for the transport of gas via membranes. Furthermore, the permeability of CO2, N2, H2 and CH4 increased by increasing the temperature from 20 to 60 °C due to the plasticization in the membranes and the improvement in polymer chain movement. This result proved that the prepared membranes can be used for gas separation applications.  相似文献   

6.
New polysulfone (PSF) copolymers from bis(4-fluorophenyl)sulfone and based on equimolar mixtures of the rigid/compact naphthalene moiety with bulky connectors from bisphenols: tetramethyl, hexafluoro, and tetramethyl hexafluoro, respectively, were synthesized to measure significant physical properties related to the gas separation field. The flexible and transparent polymer dense films TM-NPSF, HF-NPSF and TMHF-NPSF show high glass transition temperatures Tg  230 °C and high decomposition temperatures TD  400 °C (10 wt.% loss, in air). Free volume cavity sizes, as determined by PALS, are in the range of 94–139 Å3. Their gas permeability and selectivity combinations of properties, measured at 35 °C and 2 atm, are very attractive since their selectivity for the pair of gases H2/CH4, O2/N2, and CO2/CH4 are higher than those for commercial PSF membranes, having similar or superior permeability coefficients for the most permeable gases H2, O2, and CO2. Especially important is the tetramethyl naphthalene polysulfone TM-NPSF membrane which reports selectivities for H2/CH4, O2/N2 and CO2/CH4 of 122, 7.6 and 38 with corresponding permeability coefficients (in Barrers) of 17 for H2, 1.2 for O2, and 5.2 for CO2. These results are interpreted in terms of free volume size and glass transition temperature together with the respective contribution of gas solubility and diffusivity to the overall selectivity coefficients.  相似文献   

7.
This work presents an attempt at correlating the available permeability/selectivity literature data for hollow fibers and flat membranes. Therefore, this paper gathers the information pertaining to membrane materials for which membrane properties of flat membranes and hollow fibers have both been reported. An overview of the relations between selectivity and permeance of hollow fiber membranes for various gas pairs (O2/N2, CO2/CH4, CO2/N2, H2/N2, H2/CO2, H2/CH4 and He/N2) is presented first. The upper bound lines are the ones proposed by Robeson, which were calculated by assuming a one-micron-thick skin layer as proposed by Robeson in 2008. From the results obtained, a relation between the selectivity ratio in both kinds of membranes (αHf) and skin layer thickness (l) calculated from flat membranes and hollow fibers gas permeation data for these pairs of gases is also presented. The skin layer thicknesses measured using seven different experimental techniques for six commercial membranes are compared. The influences of spinning parameters on the morphology and performance of hollow fiber membrane gas separation are discussed. Finally, an analysis is made of the reasons why the dense skin layer thicknesses of a hollow fiber calculated using permeance and permeability data vary for different gases and also differ from direct experimental measurements.  相似文献   

8.
The goal of this work is to explore new polyimide materials that exhibit both high permeability and high selectivity for specific gases. Copolyimides offer the possibility of preparing membranes with gas permeabilities and selectivities not obtainable with homopolyimides. A series of novel fluorinated copolyimides were synthesized with various diamine compositions by chemical imidization in a two-pot procedure. Polyamic acids were prepared by stoichiometric addition of solid dianhydride in portions to the diamine(s). The gas permeation behavior of 2,2′-bis(3,4′-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA)-2,6-diamine toluene (2,6-DAT)/1,3-phenylenediamine (mPDA) polyimides was investigated. The physical properties of the copolyimides were characterized by IR, DSC and TGA. The glass transition temperature increased with increase in 2,6-DAT content. All the copolyimides were soluble in most of the common solvents. The gas permeability coefficients decreased with increasing mPDA content. However, the permselectivity of gas pairs such as H2/N2, O2/N2, and CO2/CH4 was enhanced with the incorporation of mPDA moiety. The permeability coefficients of H2, O2, N2, CO2 and CH4 were found to decrease with the increasing order of kinetic diameters of the penetrant gases. 6FDA-2,6-DAT/mPDA (3:1) copolyimide and 6FDA-2,6-DAT polyimide had high separation properties for H2/N2, O2/N2, CO2/CH4. Their H2, O2 and CO2 permeability coefficients were 64.99 Barrer, 5.22 Barrer, 23.87 Barrer and 81.96 Barrer, 8.83 Barrer, 39.59 Barrer, respectively, at 35°C and 0.2 MPa (1 Barrer = 10−10 cm3 (STP)·cm·cm−2·s−1·cmHg−1) and their ideal permselectivities of H2/N2, O2/N2 and CO2/CH4 were 69.61, 6.09, 63.92 and 53.45, 5.76, 57.41, respectively. Moreover, all of the copolyimides studied in this work exhibited similar performance, lying on or above the existing upper bound trade-off lines between permselectivity and permeability. They may be utilized for commercial gas separation membrane materials. __________ Translated from Acta Polymerica Sinica, 2008, 8 (in Chinese)  相似文献   

9.
An experimental and theoretical study has been used to investigate gas diffusion and solubility in PEBAX®2533 block copolymer membrane. Molecular simulations using COMPASS force field have been successful in predicting the gas-transport properties of a PEBAX®2533 block copolymer and of a pure PTMO homopolymer. Gusev–Suter transition state theory (TST) and Monte Carlo methods are used for simulating the transport of five permanent gases (He, H2, N2, O2, CO2 and CH4). Theoretical and experimental data have been compared.  相似文献   

10.
Poly(4-methyl-2-pentyne) (PMP) has been crosslinked using 4,4′-(hexafluoroisopropylidene) diphenyl azide (HFBAA) to improve its chemical and physical stability over time. Crosslinking PMP renders it insoluble in good solvents for the uncrosslinked polymer. Gas permeability and fractional free volume (FFV) decreased as crosslinker content increased, while gas sorption was unaffected by crosslinking. Therefore, the reduction in permeability upon crosslinking PMP was due to decrease in diffusion coefficient. Compared to the pure PMP membrane, the permeability of the crosslinked membrane is initially reduced for all gases tested due to the crosslinking. By adding nanoparticles (FS, TiO2), the permeability is again increased; permeability reductions due to crosslinking could be offset by adding nanoparticles to the membranes. Increased selectivity is documented for the gas pairs O2/N2, H2/N2, CO2/N2, CO2/CH4 and H2/CH4 using crosslinking and addition of nanoparticles. Crosslinking is successful in maintaining the permeability and selectivity of PMP membranes and PMP/filler nanocomposites over time.  相似文献   

11.
Mixed-matrix membranes were prepared from Matrimid® and mesoporous ZSM-5 nanoparticles containing crystalline ZSM-5. The ideal selectivity for H2/N2 separation increased from 79.6 for pure Matrimid® to 143 at 10% loading, while the selectivity of O2/N2 increased from 6.6 for pure Matrimid® to 10.4 at 20% loading. The ideal H2/CH4 separation factor increased from 83.3 to 169 at 20% loading. The results suggest that the mesopores of the ZSM-5 material provide good contact between the nanoparticles and the polymer, since the polymer chains can penetrate into the mesopores. The micropores of ZSM-5 crystals provide size and shape selectivity.  相似文献   

12.
Integrally skinned asymmetric poly(vinylidene fluoride) hollow fibre membranes were prepared and characterized. The effects of phase inversion methods (dry-wet or wet) and spinning conditions, such as the type of solvent (NMP, DMAc), the concentration of polymer in dope solution, temperature of the external coagulation bath and the composition of the inner coagulant on the morphology and on the formation of a dense skin layer were investigated. The structure of the membranes was analyzed by scanning electron microscopy and the gas permeation properties with six different gases (He, H2, N2, O2, CH4 and CO2) were measured at 25 °C to confirm the integrity of the selective skin layer. Under the proper conditions highly selective and permeable PVDF hollow fibre membranes were thus obtained by dry-wet spinning of a 30 wt.% PVDF solution in DMAc, using hot water (50 °C) as the external coagulant and a bore fluid of pure water as the internal coagulant. The best membrane had a selective outer skin with an effective thickness of approximately 0.2 μm. The ideal selectivity of the hollow fibres approached or even exceeded the intrinsic ideal selectivity of a dense PVDF film, for instance the selectivity for He over N2 was 86.2 for the hollow fibre, whereas it was 83.5 for a dense PVDF reference film. DSC and FT-IR/ATR analysis indicated a higher fraction of the β-crystal phase in the selective skin and a high overall crystallinity than in the melt-processed film. The latter explains the relatively high selectivity and low permeability of the membranes. Intrinsic polymer properties make the membranes also suitable for vapour transport than for gas separation.  相似文献   

13.
The effect of silica nanoparticles on the gas separation properties of ethylene vinyl acetate (EVA) copolymer containing 28% vinyl acetate has been investigated. The EVA and hybrid EVA–silica membranes were prepared via thermal phase inversion method. Silica nanoparticles prepared by hydrolysis of tetraethylorthosilicate (TEOS), through the sol–gel mechanism. The prepared membranes were characterized using FT-IR, SEM, DSC and XRD methods. FT-IR and SEM results indicated the nanoscale dispersion of silica particles in polymer matrix. As confirmed by XRD and DSC analyses, increasing the silica content enhances the amorphous regions significantly. Gas permeation of EVA–silica nanocomposite membranes with silica contents of 5, 6 and 10 wt.% was studied for N2, O2, CO2 and CH4 single gases at pressures of 4, 6 and 8 bar. The obtained results suggest a significant increase in permeability of all gases and an increase in CO2/N2 and CO2/CH4 gases selectivities upon increasing the silica content. The possible reasons for such behavior were stated and discussed. The pressure dependence of the gas permeabilities of the membranes was also investigated.  相似文献   

14.
Fundamental understanding of the material science and rheological engineering to fabricate Torlon® 4000T-MV and 4000TF hollow fiber membranes with an ultra-thin and defect-free dense-selective layer for gas separation has been revealed. We have firstly investigated the rheology of Torlon® 4000T-MV and 4000TF dope solutions, and then determined the effect of temperature-correlated shear and elongational viscosities on the formation of Torlon® fibers for gas separation. Interestingly, Torlon® 4000T-MV and 4000TF possess different rheological characteristics: the elongational viscosity of Torlon® 4000T-MV/NMP solution shows strain thinning, while Torlon® 4000TF/NMP solution shows strain hardening. The balanced viscoelastic properties of dope solutions, which are strongly dependent on the spinning temperature, have been found to be crucial for the formation of a defect-free dense layer. The optimum rheological properties to fabricate Torlon® 4000T-MV/NMP hollow fibers appear at about 48–50 °C, and the resultant fibers have an O2/N2 selectivity of 8.37 and an apparent dense layer thickness of 781 Å. By comparison, the best Torlon® 4000TF fibers were spun at 24 °C with an O2/N2 selectivity of 8.96 and a dense layer of 1116 Å. The CO2/CH4 selectivity of the above two Torlon® variants is 47 and 53.5, respectively.  相似文献   

15.
New polyimide-polyaniline hollow fibers were produced by dissolution of the polymers in NMP and dry/wet spinning of the resulting solution in a non-solvent (H2O). The morphology and thermal properties of the fibers, were examined by means of SEM and TGA, and FTIR spectroscopy was used for the study of their chemical structure. Permeability and selectivity measurements in different gases (He, H2, CH4, CO2, O2 and N2) were performed in order to evaluate the performance of the membrane in gas separation applications. The results indicate that the novel membrane is a well structured hollow fiber, thermally stable up to 500°. The introduction of polyaniline into the polyimide matrix, results in a great enhancement in fiber permeability (60-600 times) possibly due to increase of the total free volume due to the introduction of shorter polyaniline molecules in the matrix, allowing larger quantities of gases to pass through the composite membrane. Perm-selectivity ratios for the composite membranes H2/CH4, He/N2, H2/N2 and H2/CO2 were found lower by a factor of 6.4, 8.9, 7.7 and 1.47, respectively, compared to membranes produced using only polyimide. The opposite effect was observed for CH4/CO2 and N2/CO2 perm-selectivity ratios that showed an increase by a factor of 3.52 and 5.2, respectively. The ratio CH4/CO2 is of particular interest for natural gas purification purposes.  相似文献   

16.
The novel cross-linker, poly(propylene glycol) block poly(ethylene glycol) block poly(propylene glycol) diamine (PPG/PEG/PPGDA), was employed to chemically cross-link Matrimid 5218 at room temperature. The cross-linking reaction process was monitored by FTIR. The XRD was used to indicate the changing of the polymer structure by cross-linking reaction. The effects of the cross-linking reaction on mechanical performance, gel content and H2, CO2, N2 and CH4 gas transport properties of the cross-linked Matrimid membranes were investigated. The cross-linked Matrimid membranes display excellent CO2 permeability and CO2/light gas selectivity compared with the uncross-linked Matrimid membrane. Finally, the potential application of the cross-linked Matrimid membranes for CO2/light gas separation was explored.  相似文献   

17.
Poly (ether-b-amide) (PEBA) mixed matrix membranes (MMMs) filled by different amounts of nano ZnO (up to 1 wt %) were synthesized and their gas separation performance was evaluated for CO2, CH4 and N2 pure gas and their binary mixtures. The ZnO-filled PEBA MMMs were characterized using ATR-FTIR, FESEM, AFM, TGA, DMTA, XRD and Mechanical tensile strength analyses. Generally, it was revealed that 0.5 wt % loading of ZnO into the polymer matrix caused a ZnO−PEO interaction; while ZnO–ZnO self-association hindered the interaction for the MMMs with other loadings of ZnO. As a result, PEBA-ZnO 0.5 wt % MMM possessed a higher glass transition temperature (Tg). Therefore, the CO2 permeability through PEBA-ZnO 0.5 wt % enhanced 27% than simple PEBA membrane. Moreover, all the fabricated MMMs were simulated by molecular simulation. Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD) methods were also applied to simulate the structural and gas transport properties of the membranes. The RDF, XRD, Tg, FFV and density analysis were compared with experimental results. Also, a binary mixture of CO2:CH4 (10:90) was used to determine CO2 permeability and CO2/CH4 selectivity, which were considerably reduced compared to single gas experiments. Moreover, the solubility of the binary gas mixture, the energy distribution and density distribution of both gases within the simulated cell were calculated by molecular simulation.  相似文献   

18.
A SAPO-34 membrane separated CO2/H2 and H2/CH4 mixtures at feed pressures up to 1.7 MPa. Strong CO2 adsorption inhibited H2 adsorption and decreased H2 permeances significantly, especially at low temperatures, so that CO2 preferentially permeated and CO2/H2 selectivities were higher at low temperatures. At 253 K, CO2/H2 separation selectivities were greater than 100 with CO2 permeances of 3 × 10−8 mol m−2 s−1 Pa−1. The CO2/H2 separation exceeded the upper bounds (selectivity–permeability plot) for polymer membranes. The SAPO-34 membrane separated H2 from CH4 because CH4 is close to the SAPO-34 pore size and has a lower diffusivity than H2. The H2/CH4 separation selectivity had a small maximum with temperature, and decreased slightly with feed pressure and CH4 feed concentration.  相似文献   

19.
The objective of this study was to synthesize rubbery polymers with a high H2S/CH4 selectivity for possible use as membrane materials for the separation of H2S from ‘low-quality’ natural gas. Two poly(ether urethanes), designated hereafter PU1 and PU3, and two poly(ether urethane ureas), designated PU2 and PU4, were synthesized and cast in the form of ‘dense’ (homogeneous) membranes. PU1 and PU2 contained poly(propylene oxide) whereas PU3 and PU4 contained poly(ethylene oxide) as the polyether component. The permeability of these membranes to two ternary mixtures of CH4, CO2, and H2S was measured at 35°C, and for a PU4 membrane also at 20°C, in the pressure range from 4 to 13.6 atm (4.05–13.78×105 Pa). PU4 is a very promising membrane material for H2S separation from mixtures with CH4 and CO2, having a H2S/CH4 selectivity greater than 100 at 20°C as well as a very high permeability to H2S. Permeability measurements were also made with commercial PEBAXTM membranes for comparison. The possibility of upgrading low-quality natural gas to US pipeline specifications for H2S and CO2 by means of membrane processes utilizing both highly H2S-selective and CO2-selective polymer membranes is discussed.  相似文献   

20.
Diffusion and solubility coefficients have been determined for the CO2?, CH4?, C2H4?, and C3H8-polyethylene systems at temperatures of 5, 20, and 35°C and at gas pressures up to 40 atm. Diffusion coefficients were obtained from rates of gas absorption in polyethylene rods under isothermal-isobaric conditions by means of a new diffusivity apparatus. The concentration dependence of the diffusion coefficients was represented satisfactorily by Fujita's free-volume model, modified for semicrystalline polymers, while the solubility of all the penetrants in polyethylene was within the limit of Henry's law. Semiempirical correlations were found for the free-volume parameters in terms of physicochemical properties of the penetrant gases and the penetrant-polymer systems. These correlations, if confirmed, should permit the prediction of diffusion and permeability coefficients of other gases and of gas mixtures in polyethylene as functions of pressure and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号