首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A semi-continuous process of polymer enhanced ultrafiltration for removal of lead and cadmium has been elaborated. This operation mode would let a better coupling between industrial and laboratory-scale processes. Basically, it includes two stages: (1) metal retention, where we can obtain a permeate stream free of heavy metals; (2) polymer regeneration, where the polymer is regenerated in order to be reused in metal retention stage. In order to work in this way, a control system of permeate and feed stream flows has been installed in a batch laboratory-scale plant. In the first place, more suitable hydrodynamic operating parameters were obtained by ultrafiltration experiments. The influence of pH has been studied to fix the pH for metal retention and polymer regeneration experiments, and the operative polymer binding capacity has been determined to know the metal amount that can be treated. A mathematical model taking into account both conservation equations and competitive reactions which occur in the medium has been established. The development of this mathematical model (which is in good agreement with experimental data) enables to estimate design parameters to dimension pilot and industrial scale installations based on this process.  相似文献   

2.
Performance of a semi-continuous polymer enhanced ultrafiltration (PEUF) process has been investigated for the simultaneous recovery of cadmium and lead from binary mixtures. This method uses poly(acrylic acid) as water-soluble polymer to bind these metals. Experiments have taken place in a laboratory-scale system. Loading ratio (mg total metal ions/g polymer) and pH values for separation of cadmium and lead have been studied by means of preliminary experiments, analyzing their influence on permeate flux, metal rejection coefficients and separation factor.The proposed process includes three different stages: total retention of metal ions, selective separation and polymer regeneration. Operating pH values for total retention of metal ions and polymer regeneration processes are 5 and 2, respectively. Selective separation has been investigated working at an intermediate pH value. In this way, if a stream containing 12.5 ppm of each metal ion (1:1 in weight) is treated in the first stage, two different streams enriched in each metal ion are obtained in the second stage. Permeate stream is enriched in cadmium with a proportion near 5:1 in weight, and retentate is enriched in lead with a similar proportion.Finally, the three stages have been modelled successfully with a mathematical model based on conservation equations and chemical reactions taking place in solution.  相似文献   

3.
Diffusion coefficients of Cu2+ in the form of its carboxylate have been measured in isotactic polypropylene as a function of temperature (90–128°C) and extent of preoxidation. Diffusion take place from the metal catalyst/polymer interface into the bulk polymer. The diffusion is dependent on the extent of preoxidation and temperature but not on the type of catalyst (Cu, CuO, CuO0.67). Analysis of polymer sections for Cu2+ ions was carried out with a selective Cu2+ electrode. Diffusion in isotactic polypropylene is about 1000 times faster than in lowdensity polyethylene. The carboxylate anion appears to have about 7 C-atoms for diffusion in isotactic polypropylene compared with 29 C-atoms for low-density polyethylene.  相似文献   

4.
Summary: A case-study using macromolecular metal complexes is described. The results of a process named Polymer Assisted Ultrafiltration (PAUF) for ion removal from various types of waters is reported. The water soluble polymers such as polyetilenimine (PEI), polyacrylic acid (PAA), polyacrylic acid sodium salt (PAASS) and poly(dimethylamine–co–epichlorohydrin–co–ethylenediamine) (PDEHED) as chelating agents, the Cu2+ as model ion and five ultrafiltration membranes have been used. The complexing agents were previously tested to establish the binding capacity and the best operating conditions for the process. Among the tested polymers the PEI appeared the most interesting one because its binding mechanism does not involve a counter ion release. It was tested in the simulation of wastewaters treatment containing the Cu2+ ion chelated with citric acid; this is a problem of interest in the recycling of water from soil washing operations. The polyethylenimine quantitatively bound the copper-citrate chelate at pH 5.5 and the three component complex was separated by UF membranes producing a permeate with very low metal concentration. The polymer regeneration was carried out with good results by operating with the diafiltration method. The copper ion present in the diafiltration permeate in a form chelated with citric acid was recovered by oxidising the citrate in a membrane photoreactor. The positive results of the described case-study show that Macromolecule-Metal Complexes play a key role for running effectively and selectively the PAUF process for removing metal ions from various type of waters.  相似文献   

5.
The ultrafiltration technique evaluates the interactions of water‐soluble polymers with metal ions. Aqueous solutions containing poly(sodium 4‐styrenesulfonate) (PSS), Cu(NO3)2, NaNO3, and iminodiacetic acid (IDAA) are examined by this technique. Cu2+ undergoes complex formation with IDAA and intreracts electrostatically with PSS. On the other hand, Na+ ions are in competition with Cu2+ for the electrostatic binding to PSS. The solutions are ultrafiltered keeping the ionic strength constant, so their compositions are allowed to change continuously. The concentration of Cu2+ bound to the polymer showed an exponential decay during filtration. The concentration of Cu2+ bound to the polymer before ultrafiltration is calculated by extrapolation. The concentration of the different species in solution is proposed as a function of the filtration factor. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2587–2593, 2002  相似文献   

6.
o-Cresol–thiourea–formaldehyde terpolymer resin was synthesized through the condensation of o-cresol and thiourea with formaldehyde in the mole ratio 1:3:5 in the presence of 2 M hydrochloric acid as a catalyst. The resulting copolymer was characterized with IR and 1H NMR spectral data. The average molecular weight of the resin was determined by Gel permeation chromatography. Thermal study of the resin was carried out to calculate the activation energy (Ea), enthalpy of activation (H3), entropy of activation (S3), free energy of activation (G3), and pre-exponential factor (A) of various steps of thermal decomposition of the terpolymer. The Dharwadkar and Kharkhanavala method has been used to calculate thermal activation energy and thermal stability. The chelation ion-exchange properties were also studied with the batch equilibrium method. The chelation ion-exchange properties of the copolymer was studied for Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+ and Cd2+ ions. The resin was proved to be selective chelating ion-exchange copolymer for certain metals. The study was carried out over a wide pH range and in media of various ionic strengths.  相似文献   

7.
Simulations of three different 3-bed 3-step pressure swing adsorption (PSA) cycles were carried out to study the enrichment and recovery of 14CO from an isotopic mixture of 14CO, 13CO and 12CO using NaX zeolite. Each PSA cycle included feed pressurization/feed (FP/P), heavy reflux (HR) and countercurrent depressurization (CnD) steps; they differed only in the way the CnD step was carried out: PSA Cycle I was carried out under total reflux (i.e., with no 14CO heavy product production); PSA Cycle II was carried out with discontinuous 14CO heavy product production; and PSA Cycle III was carried out with continuous 14CO heavy product production. The effects of the CnD step valve coefficient (c v ), heavy reflux ratio (R R ), and cycle time (t cyc ) on the PSA process performance were determined in terms of the 14CO enrichment, 14CO recovery and CO feed throughput. The results showed that there was essentially no limit to the extent of the 14CO enrichment, despite the inherently low 14CO/12CO (1.05) and 14CO/13CO (1.12) separation factors for these isotopes on NaX zeolite. Under total reflux an optimum c v was found for the CnD step and 14CO enrichments as high as 152 were obtained. Using the optimum c v under finite reflux, a 14CO enrichment approaching 20 and a 14CO recovery approaching 100 % were easily achieved with discontinuous (PSA Cycle II) or continuous (PSA Cycle III) 14CO heavy product production. There was essentially no difference in the performance of PSA Cycles II and III, a counterintuitive result. The 14CO enrichment and the 14CO recovery both increased with decreasing CO feed throughputs and higher R R , which were always very close to unity.  相似文献   

8.
The retention of Co2+, Ni2+ and Cu2+ metal ions from aqueous solution, on a functionalized hybrid material obtained by the anchorage of N-(4-amino-1,6-dihydro-1-methyl-5-nitroso-6-oxopyrimidin-2-yl)-N′-[bis(2-aminoethyl)] ethylenediamine ligand on a low-functionalized activated carbon, at pH 4.5 has been studied. The adsorption isotherms fit the Langmuir equation and the calculated maximum adsorption capacities were compared to those obtained by using the un-functionalized activated carbon as well as to other analogous hybrid materials as adsorbent of the same metal ions. These studies were carried out by rationalizing the resulting adsorption data regarding the stability constant values of the complexes formed by the three metal ions with the free tri-amine function of the ligand. The results demonstrate that the adsorption capacities of the activated carbon–ligand hybrid material towards the three metal-ions studied correlated with the stabilities of the tri-amine-metal-ion bonds formed during the adsorption processes.  相似文献   

9.
The retention properties for metal ions, the maximum retention capacity, the antibacterial and mutagenic activity of water-soluble metal ion complexes from water-soluble poly[2-hydroxy-(3-methacryloyloxypropyl)aminodiacetic acid] P(HMPADA) were studied. HMPADA was synthesized by radical polymerization in aqueous solution. The water-soluble polymer (WSP) P(HMPADA), containing ester, hydroxy, tertiary amine, and two carboxylic acid groups in every monomeric unit was investigated as polychelatogen in view of its potential metal ion binding properties using the liquid-phase polymer based retention (LPR) technique under different experimental conditions. The water-soluble complexes were investigated as biocides. Metal ions investigated at pH 3, 5, and 7 were: Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, Al3+, Cr3+, and Fe3+. Depending on pH, P(HMPADA) showed a different interaction affinity, where the highest interaction occurred at pH 7. Polymer-metal ion interaction showed the following affinity order: tri-valent >di-valent >mono-valent ion. Maximum retention capacity (MRC) ranged between 17.2 and 342.2 mg metal ion/g polymer for Cu2+ and Ag+, respectively. FT-IR showed a variation in νCO, νΟ−CO, νOH absorption signals, and Far-IR showed new signals corresponding to metal-O and metal-N interaction, indicating a participation of carboxylic acid, amine, and hydroxy groups of polymer-metal ion complexes. Antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ complexes were studied. These complexes presented a higher biocide activity against Staphylococcus aureus (Gram-positive) than for Escherichia coli (Gram-negative) with a lowest minimum inhibitory concentration (MIC) of 4 mg/mL for polymer-Cd2+ complex. Scanning electron microscopy (SEM) showed the interaction between polymer-metal ion complexes and bacteria surface. All samples showed low genotoxic activity.  相似文献   

10.
The kinetics of 5′-ATP hydrolysis catalyzed by the Cu2+ ion has been investigated by HPLC in the pH range 5.6–7.8 at 25°C. Two series of experiments differing in the initial [Cu · ATP]0 (1: 1) concentration have been carried out. The reaction was being conducted up to ≈40% ATP conversion. The (CuATP2?)2OH??ub;DOH??ub; complex, which consists of two monomeric Cy(CuATP2?) molecules (in which the N7 atom and the γ-phosphate group are coordinated to Cu2+), is responsible for the formation of CuADP? + Pi (Pi is an inorganic phosphate). The highest possible DOH? concentration at a given pH is reached at the initial stage of hydrolysis. The pH value at which the highest initial rate of ADP formation is reached (pHmax (w 0, ADP)) decreases as the D concentration increases. At pH > pHmax, the decrease in the ADP formation rate in the course of the processes is pH-independent and, once an ATP conversion of 20–26% is reached, hydrolysis proceeds in a steady-state regime such that ADP and AMP form from ATP by parallel reactions. The participation of the OH? ion in the catalysis of the formation of hydrolysis intermediates is considered.  相似文献   

11.
All-solid-state lithium metal batteries (LMBs) are considered as the promising higher-energy and improved-safety energy-storage systems. Nevertheless, the electrolyte-electrodes interfacial issues due to the limited solid physical contact lead to discontinuous interfacial charge transport and large interfacial resistance, thereby suffering from unsatisfactory electrochemical performance. Herein, we construct an integrated cathode/polymer electrolyte for all-solid-state LMBs under the action of polymer chains exchange and recombination originating from multiple dynamic bonds in our well-designed dynamic supramolecular ionic conductive elastomers (DSICE) molecular structure. The DSICE acts as polymer electrolytes with excellent electrochemical performance and mechanical properties, achieving the ultrathin pure polymer electrolyte thickness (12 μm). Notably, the DSICE also functions as lithium iron phosphate (LiFePO4, LFP) cathode binders with enhanced adhesive capability. Such well-constructed Li|DSICE|LFP-DSICE cells generate delicate electrolyte-electrodes interfacial contact at the molecular level, providing continuous Li+ transport pathways and promoting uniform Li+ deposition, further delivering superior long-term charge/discharge stability (>600 cycles, Coulombic efficiency, >99.8 %) and high capacity retention (80 % after 400 cycles). More practically, the Li|DSICE|LFP-DSICE pouch cells show stable electrochemical performance, excellent flexibility and safety under abusive tests.  相似文献   

12.

Using the gel synthesis approach of polymer-analogous transformations, N-sulfoethylation of polyethylenimine was carried out by treating the polymer with sodium vinyl sulfonate. The compositions and structures of the products were characterized by elemental analysis, FT-IR spectroscopy, and 1H NMR spectroscopy. At pH 3.0–4.5 sulfoethylated polyethylenimine can selectively extract AgI and CuII from an ammonia—acetate buffer solution in the presence of a series of transition and alkaline-earth metals. At pH > 6.5 the sorbent can be used for the group extraction of a number of transition metal ions. The structural feature of the obtained derivative eliminates the selectivity of sorption of AgI ions compared to CuII ions, which has previously been revealed for the sulfoethylated derivatives of chitosan and polyaminostyrene.

  相似文献   

13.
A new polystyrene-supported Schiff base resin, N,N-bis(salicylidenepropylenetriamine)- aminomethyl polystyrene, has been synthesized through a reaction between the commercially available 4-chloromethyl polystyrene polymer and the Schiff base, N,N′-disalicylidenepropylenetriamine. The chelation behavior of this resin toward the divalent metal ions Cu2 +, Ni2 +, Zn2 +, and Pb2 + in aqueous solutions was investigated. Batch equilibration experiments were carried out as a function of contact time, pH, amount of metal-ion, polymer mass, and temperature. The amount of metal-ion uptake of the polymers was determined by using atomic absorption spectrometry (AAS). Results of the study revealed that the resin exhibited higher capacities and a more pronounced adsorption toward Cu2 + and that the metal-ion uptake follows the order: Cu2 + > Zn 2 + > Ni2 + > Pb2+. The adsorption and binding capacity of the resin toward the various metal ions investigated are discussed.  相似文献   

14.
Electrochemical polymerization of p-aminophenol in aqueous sulfuric acid solution has been carried out at a platinum foil using repeated potential cycles at the range of ?0.20 to 0.95 V (vs. SCE). The resulting polymer has good electrochemical activity and a fast charge transfer characteristic in the solutions of 0.5 mol dm?3 Na2SO4 with pH ≤ 9.0. Based on the spectroscopic measurements, a possible chemical structure of the resulting polymer was proposed. IR and XPS spectra indicate that SO4 2? ions are contained in the resulting polymer. The scanning electron microscopy (SEM) micrograph proves that the net-like microstructure of the poly(p-aminophenol) film, which is a macroporous network composed of interwoven and coalescing fiber diameters of 100–500 nm and pore diameters of 500 nm–3 μ m, can be prepared using the electrochemical method.  相似文献   

15.
A novel metal coordination polymer, {[Cu2(L)2(Phen)2] · 8H2O} n (I), has been synthesized by the reaction of Cu(NO3)2 with 2,2′-bipyridyl-4,4′-dicarboxylic acid (L) and 1,10-phenanthroline (Phen) at room temperature. The polymer was characterized by IR, elemental analyses and X-ray diffraction. Single-crystal structural analysis reveals that the center Cu2+ ions have two coordinated types. The Cu(1) atom has the five-coordinate mode, and Cu(2) forms an is octahedron of the six-coordinate mode. Two Cu2+ ions are connected by the O atom of carboxylate group bridges. Complex I contains eight molecules of water clusters and constructed a 1D tape structure.  相似文献   

16.
Polymers were prepared by the condensation of 2, 4-dihydroxybenzaldehydeoxime (2, 4-DBO) and formaldehyde (F) in the presence of oxalic acid as catalyst with varying molar ratios of reacting monomers. Polymers were characterized by their IR spectra, elemental analyses, TGA and Mn as determined by vapour pressure osmometry as well as by non-aqueous conductometric titrations. Viscosity measurements of the solutions of polymer samples were carried out in dimethylformamide. Chelation ion-exchange properties have also been studied employing the batch equilibration method. This method involved the measurement of distribution of a given metal between the polymer sample and a solution containing metal ions. The study was carried out over a wide pH range and in media of various ionic strengths. The polymer showed a higher selectivity for UO 2 2+ and Fe3+ ions than for Cu2+, Ni2+, Co2+ and Mn2+ ions.  相似文献   

17.
Summary: Water-soluble poly[3-(dimethylamino)propylacrylate] is synthesized by radical polymerization with a yield of 87%. The polymer structure is confirmed by FT-IR and 1H-NMR spectroscopies. The polymer lost only 3% of weight up to 100 °C. The narrowest molecular weight distribution is observed with the fraction between 3,000 and 10,000 Da. P(DAPA) presents a high affinity for the metal ions Pb2+ and Cu2+, while the other metal ions are not significantly retained. By increasing the filtration factor, Z, metal ion affinity decreases, indicating a very weak ligand-metal interaction and the possibility of its destruction when washed with water at the filtration cell's pH. For Z = 10, the retention values of Pb2+ and Cu2+ at pH 5 are 76.5% and 48.5%, respectively, while the values for Cu2+ and Cd2+ at pH 7 are 89.5% and 40.4%, respectively.  相似文献   

18.
The multicomponent system consisting of poly(sodium 4‐styrenesulfonate) (PSS), iminodiacetic acid (IDAA), and Cu(NO3)2 in water at pH 4 was studied by means of ultrafiltration at low and relatively high ionic strengths. Under the experimental conditions, IDAA is negatively charged, and is slightly retained in ultrafiltration experiments in the presence of the water‐soluble polyelectrolyte PSS. The positively charged copper ions are strongly retained by PSS. Due to the capability of IDAA to form stable complexes with Cu2+ ions, the resulting blue 1:1 complex between IDAA and Cu2+ is not retained by PSS, but is eluted from the ultrafiltration cell at pH 4.  相似文献   

19.
The stability of conducting fabrics of polyester (PES) covered with polypyrrole/anthraquinone sulfonic acid (AQSA) has been tested in different pH solutions (1, 7, 13) and after washing tests. It is important to determine the stability of the counter-ion in the polymer matrix, since its loss causes the decrease of the conducting properties of the fabrics. X-ray photoelectron spectroscopy (XPS) studies were done to quantify the amount of counter-ion in the polymer and to obtain the doping level (Nδ+/N). Surface resistivity changes after the different tests were measured by electrochemical impedance spectroscopy (EIS). An increase in the solution pH caused a decrease of the doping level (Nδ+/N), the release of part of the counter-ions and an increase in the surface resistivity. Cyclic voltammetry (CV) measurements showed a gradual loss of electroactivity as pH increased. The influence of the scan rate on the characterization of conducting fabrics has been also demonstrated by CV. Lower scan rates produce a more characteristic response than higher ones. Scanning electrochemical microscopy (SECM) measurements showed a loss of electroactivity when the sample was tested in the pH 13 solution, although the material continued being electroactive.  相似文献   

20.
Conductivity of the network polymer based on tetra(sulfonatophenyl)-meta-cyclophanoctol in the H+, Na+, Cu2+, Zn2+, and Ni2+ forms is studied, and the self-diffusion coefficients and activation energies of diffusion of the metal cations in the polymer phase are estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号