首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The axion–photon system in an external magnetic field, when the direction of propagation of axions and photons is orthogonal to the direction of the external magnetic field, displays a continuous axion–photon duality symmetry in the limit the axion mass is neglected. The conservation law that follow in this effective (2+1)(2+1)-dimensional theory from this symmetry is obtained. The magnetic field interaction is seen to be equivalent to first order to the interaction of a complex charged field with an external electric potential, where this fictitious “electric potential” is proportional to the external magnetic field. This allows one to solve for the scattering amplitudes using already known scalar QED results. From the scalar QED analog the axion and the photon are symmetric and antisymmetric combinations of particle and antiparticle. If one considers therefore scattering experiments in which the two spatial dimensions of the effective theory are involved nontrivially, one observes that both particle and antiparticle components of photons and axions are preferentially scattered in different directions, thus producing the splitting or decomposition of the photon and axion into their particle and antiparticle components in an inhomogeneous magnetic field. This observable in principle effect is of first order in the axion–photon coupling, unlike the “light shining through a wall phenomena”, which is second order.  相似文献   

2.
Adam Noble 《Physics letters. A》2008,372(14):2346-2349
The interaction of axion and electromagnetic waves is studied in the presence of a magnetic field threading a waveguide. This interaction, which vanishes in free space, is found to induce transverse magnetic waves with frequency spectra associated with transverse electric waves in the absence of the axion.  相似文献   

3.
The dispersion relation of magnetostatic waves tangentially magnetized to saturation ferrite film, with a “magnetic wall” condition (tangential component of microwave magnetic field is equal to zero) on one of the film surface and with a metal condition on the opposite surface is analyzed. The dispersion characteristics show that unidirectional magnetostatic waves appear in this structure: they can transfer energy in one direction only and fundamentally cannot transfer energy in the opposite direction. The dispersion-free propagation of magnetostatic waves also is possible in the structure in a wide frequency interval.  相似文献   

4.
The lasing frequencies of a ring laser with counterpropagating electromagnetic waves are calculated for the case when a part of the laser circuit is subjected to a constant electromagnetic field. It is demonstrated that, according to equations of the parametrized post-Maxwellian electrodynamics of vacuum, two waves with different planes of polarization and frequencies should propagate in each direction of the ring laser. The analysis has shown that, with the help of advanced ring lasers and external electromagnetic fields attainable in the laboratory, the post-Maxwellian parameters can be measured with a precision that would be sufficient to verify the most popular theoretical models of the nonlinear electrodynamics of vacuum.  相似文献   

5.
An extended electromagnetic theory has earlier been developed, as being based on the hypothesis of a nonzero electric field divergence in vacuo and the requirement of Lorentz invariance. This basis is supported by the commonly accepted fact that the vacuum is not merely an empty space, but has a ground state of nonzero energy and can become electrically polarized. The vacuum is thereby considered as electrically polarizable in the sense of being capable of supporting charge motion in the form of, e.g., space-charge waves. One result of the dynamic states of the present theory is the prediction of a purely longitudinal electric space-charge wave (S-wave) having no induced magnetic field. The behaviour of this wave type is demonstrated for a number of geometrical configurations. Some preliminary proposals are finally made for generation and detection of S waves. These waves are expected to have features which differ from those of the conventional transverse electromagnetic waves. If the S wave would come out to be physically realizable, it may thus form the basis of a new principle for telecommunication without or with very small magnetic induction effects.  相似文献   

6.
We discuss the early history of an important field of “sturm and drang” in modern theory of nonlinear waves. It is demonstrated how scientific demand resulted in independent and almost simultaneous publications by many different authors on modulation instability, a phenomenon resulting in a variety of nonlinear processes such as envelope solitons, envelope shocks, freak waves, etc. Examples from water wave hydrodynamics, electrodynamics, nonlinear optics, and convection theory are given.  相似文献   

7.
We demonstrate a possibility to stabilize three-dimensional spatiotemporal solitons (“light bullets”) in self-focusing Kerr media by means of a combination of dispersion management in the longitudinal direction (with the group-velocity dispersion alternating between positive and negative values) and periodic modulation of the refractive index in one transverse direction (out of the two). Assuming the usual model based on the paraxial nonlinear Schrödinger equation for the local amplitude of the electromagnetic field, the analysis relies upon the variational approximation (results of direct three-dimensional simulations will be reported in a follow-up). A predicted stability area is identified in the model’s parameter space. It features a minimum of the necessary strength of the transverse modulation of the refractive index, and finite minimum and maximum values of the soliton’s energy. The former feature is also explained analytically.  相似文献   

8.
A multiple scales technique is employed to solve the fluid-Maxwell equations describing a weakly nonlinear circularly polarized electromagnetic pulse in magnetized plasma. A nonlinear Schrödinger-type (NLS) equation is shown to govern the amplitude of the vector potential. The conditions for modulational instability and for the existence of various types of localized envelope modes are investigated in terms of relevant parameters. Right-hand circularly polarized (RCP) waves are shown to be modulationally unstable regardless of the value of the ambient magnetic field and propagate as bright-type solitons. The same is true for left-hand circularly polarized (LCP) waves in a weakly to moderately magnetized plasma. In other parameter regions, LCP waves are stable in strongly magnetized plasmas and may propagate as dark-type solitons (electric field holes). The evolution of envelope solitons is analyzed numerically, and it is shown that solitons propagate in magnetized plasma without any essential change in amplitude and shape.  相似文献   

9.
The nonlinear dust acoustic solitary waves in a magnetized dusty plasma with nonthermal ions and variable dust electric charge is studied analytically. Using reductive perturbation method the Zakharov‐Kuznetsov (ZK) equation is derived and effect of nonthermal coefficient, external magnetic field, and variable dust electric charge on the amplitude and width of soliton in dusty plasma is investigated. With increasing the rate of dust charge variation with respect of plasma potential, the amplitude of generated solitary waves in magnetized dusty plasma increases to a constant magnitude while its width decreases. Increasing the nonthermal ions coefficient leads to a noticeable decrease in the amplitude of solitons while the width of soliton increases. The amplitude of generated solitary waves in such a dusty plasma is independent of applied external magnetic field but we will have more localized solitons with increasing the external magnetic field strength. It is found that solitons are strongly influenced by the direction of external magnetic field. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Contrary to the superposition principle, it is well known that photorefraction exists in the vacuum with the presence of a strong static field, a laser field, or a rotational magnetic field. Different from the classical optical crystals, the refractive index also depends on the phase of the strong electromagnetic field. We obtain the phase and direction dependence of the refractive index of a probe wave incident in the strong field of a circular-polarized plane wave by solving the Maxwell equations corrected by the effective Lagrangian. It may provide a valuable theoretical basis to calculate the polarization evolution of waves in the strong electromagnetic circumstances of pulsar or neutron stars.  相似文献   

11.
The domain structures in NiFe elements were studied by magnetic force microscopy measurement and micromagnetic modeling. The remanent states in the elements were dependent on the direction of the saturation field. The “S” and “U” states were observed at remanence by applying the saturation field at different directions. The “S” and “U” states are metastable: magnetic force microscopy tip field-induced switching from the “S” and “U” states to the flux closure configuration was observed.  相似文献   

12.
脉冲磁约束线形空心阴极放电形成的大面积等离子体片可应用于等离子体天线、隐身及模拟超音速飞行器表面的等离子体鞘套. 本文首次利用实测等离子体片电子密度时空分布和横向场传播矩阵法, 研究了电磁波在等离子体片中反射率、透射率、吸收率随频率及脉冲放电时间的变化特征. 结果表明: 极化方向平行磁场的电磁波, 在小于截止频率的低频带内具有较高的反射率和吸收率, 增大电流, 反射率增加, 吸收率下降, 在大于截止频率的高频带内反射率和吸收率较低, 增大电流, 透射率下降, 吸收率升高; 极化方向垂直磁场的电磁波在高混杂谐振频率附近存在吸收率明显增强的吸收带, 谐振吸收峰值与放电电流无关; 脉冲放电期间, 电磁波的反射率、透射率与吸收率由不稳定过渡到稳定的时间约为100 μs, 过渡时间随着放电电流的增加而增大, 极化方向垂直磁场、小于截止频率的电磁波在稳定放电阶段谐振吸收较强. 本文的研究成果对利用等离子体片实现对电磁波的稳定高反射作用具有重要意义.  相似文献   

13.
We present the results of a computer experiment devoted to the problem of the interaction of two magnetic solitary spin waves moving in the direction perpendicular to the axis of easy magnetization in an uniaxial ferromagnet. Such waves being particular solutions of the Landau-Lifshitz equations move like a domain wall under the influence of an external magnetic field. Our computer experiment shows that the two solitary spin waves during their interaction, behave as two solitons and thus the concerned Landau-Lifshitz equations allows N-soliton solutions.  相似文献   

14.
A rigorous theory of the propagation of electromagnetic waves in round anisotropic and semiconductor rods in the presence of an arbitrarily directed anisotropy axis or external magnetic field is developed. New types of independent waves are discovered. Exact dispersion equations are obtained for them, which define the dependence of their spectral characteristics on the parameters of the semiconductor or anisotropic crystal and on the magnitude and direction of the constant external magnetic field. The results of numerical investigations for rods made from a semiconductor or a uniaxial crystal are presented. Zh. Tekh. Fiz. 67, 86–91 (July 1997)  相似文献   

15.
The matrix 8-component Dirac-like form of the P-odd equations for boson fields of spin 1 and 0 are obtained and the symmetry group of the equations is derived. We found exact solutions of the field equation for vector particles with arbitrary electric and magnetic moments in external constant and uniform electromagnetic fields. The differential probability of pair production of vector particles with electric dipole moments and anomalous magnetic moments by an external constant and uniform electromagnetic field has been found using exact solutions. We have calculated the imaginary and real parts of the electromagnetic field Lagrangian that takes into account the vacuum polarization of vector particles. Received: 14 April 2001 / Revised version: 13 July 2001 / Published online: 19 September 2001  相似文献   

16.
We give a detailed study of axion-photon and photon-axion conversion amplitudes, which enter the analysis of “light shining through a wall” experiments. Several different calculational methods are employed and compared, and in all cases we retain a nonzero axion mass. To leading order, we find that when the photon frequency ω is very close to the axion mass m, there is a threshold cusp which significantly enhances the photon to axion conversion amplitude, by a factor relative to the corresponding axion to photon conversion process. When m=0, the enhancement factor reduces to unity and the results of previous calculations are recovered. Our calculations include an exact wave matching analysis, which shows how unitarity is maintained near threshold at ω=m, and a discussion of the case when the magnetic field extends into the “wall” region.  相似文献   

17.
The problem of the motion of high-energy wave packets combined of free electromagnetic waves is considered. It is demonstrated that the transformation of such packets to the packet of spherically diverging waves happens on long distances along the packet's motion direction, that substantially exceed the radiated wavelength. The transition radiation by the “half-bare” ultrarelativistic electron is considered. It is demonstrated that the transition radiation by such an electron on the targets located inside and outside the coherence length of the radiation process would be substantially different.  相似文献   

18.
It is shown that the resonant Davey-Stewartson (RDS) system can pass the Painlev test. By truncating the Laurent series to a constant level term, a dependent variable transformation is naturally derived, which leads to the bilinear forms of the RDS system. From the bilinear equations, through making suitable assumptions, some new soliton solutions are obtained. Some representative profiles of the solitary waves are graphically displayed including the two-line soliton solution, “Y” soliton solution, “V” soliton solution, solitoff, etc. The solutions might be useful to describe the nonlinear phenomena in Madelung fluids, capillarity fluids, and so on.  相似文献   

19.
It has been noted that the family of plane electromagnetic waves and the electromagnetic universe of Bertotti-Robinson exhaust the entire class of conformally flat Einstein-Maxwell spaces. In the formalism of Newman-Penrose a family of exact solutions of the Einstein-Maxwell equations of the type of Bertotti-Robinson is obtained with a cosmological term belonging to the degenerate type D in the algebraic classification of Petrov and describing the space-time generated by a covariantly constant, nonisotropic electromagnetic field.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 50–55, June, 1979.  相似文献   

20.
An analysis is done of the effects of self-action of intense coherent electromagnetic radiation in an electron-positron vacuum that is in homogeneous electric and magnetic fields. A modified version of the Heisenberg-Euler theory, in which the Lagrangian incorporates terms with field derivatives, is used to take into account vacuum dispersion. The nonphysical branch of the solutions of the dispersion equation is excluded by a transition to a quasioptical equation for the slowly varying field envelope, an equation that describes the propagation of radiation with allowance for diffraction, spatial-temporal dispersion, and vacuum nonlinearity. The existence of dark solitons (with an intensity gap) in the vacuum is shown to be present. Finally, self-focusing of radiation in a vacuum is demonstrated and the critical self-focusing power is determined. Zh. éksp. Teor. Fiz. 113, 513–520 (February 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号