首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show how to enlarge the νMSM (the minimal extension of the Standard Model by three right-handed neutrinos) to incorporate inflation and provide a common source for electroweak symmetry breaking and for right-handed neutrino masses. In addition to inflation, the resulting theory can explain simultaneously dark matter and the baryon asymmetry of the Universe; it is consistent with experiments on neutrino oscillations and with all astrophysical and cosmological constraints on sterile neutrino as a dark matter candidate. The mass of inflaton can be much smaller than the electroweak scale.  相似文献   

2.
Dong-Won Jung 《Pramana》2007,69(5):789-793
In the extra dimensional scenarios with gauge fields in the bulk, the Kaluza-Klein (KK) gauge bosons can induce Nambu-Jona-Lasinio (NJL) type attractive fourfermion interactions, which can break electroweak symmetry dynamically with accompanying composite Higgs fields. We consider a possibility that electroweak symmetry breaking (EWSB) is triggered by both a fundamental Higgs and a composite Higgs arising in a dynamical symmetry breaking mechanism induced by a new strong dynamics. The resulting Higgs sector is a partially composite two-Higgs doublet model with specific boundary conditions on the coupling and mass parameters originating at a compositeness scale Λ. The phenomenology of this model is discussed including the collider phenomenology at LHC and ILC.   相似文献   

3.
Maxim Perelstein 《Pramana》2006,67(5):813-820
Little Higgs models are an interesting extension of the Standard Model at the TeV scale. They provide a simple and attractive mechanism of electroweak symmetry breaking. We review one of the simplest models of this class, the Littlest Higgs model, and its extension with T parity. The model with T parity satisfies precision electroweak constraints without fine-tuning, contains an attractive dark matter candidate, and leads to interesting phenomenology at the Large Hadron Collider (LHC).  相似文献   

4.
Within multi-Higgs-doublet models, one can impose symmetries on the Higgs potential, either discrete or continuous, that mix several doublets. In two-Higgs-doublet model any such symmetry can be conserved or spontaneously violated after the electroweak symmetry breaking (EWSB), depending on the coefficients of the potential. With more than two doublets, there exist symmetries which are always spontaneously violated after EWSB. We discuss the origin of this phenomenon and show its similarity to frustration in condensed matter physics.  相似文献   

5.
We propose a model of Dark Supersymmetry, where a supersymmetric dark sector is coupled to the classically scale invariant non-supersymmetric Standard Model through the Higgs portal. The dark sector contains a mass scale that is protected against radiative corrections by supersymmetry, and the portal coupling mediates this scale to the Standard Model, resulting in a vacuum expectation value for the Higgs field and the usual electroweak symmetry breaking mechanism. The supersymmetric dark sector contains dark matter candidates, and we show that the observed dark matter abundance is generated for a natural choice of parameters, while avoiding the current experimental bounds on direct detection. Future experiments can probe this scenario if the dark sector mass scale is not too high.  相似文献   

6.
We propose a group theoretic condition which may be applied to extensions of the Standard Model in order to locate regions of parameter space in which the electroweak phase transition is strongly first order, such that electroweak baryogenesis may be a viable mechanism for generating the baryon asymmetry of the universe. Specifically, we demonstrate that the viable corners of parameter space may be identified by their proximity to an enhanced discrete symmetry point. At this point, the global symmetry group of the theory is extended by a discrete group under which the scalar sector is non-trivially charged, and the discrete symmetry is spontaneously broken such that the discrete symmetry relates degenerate electroweak preserving and breaking vacua. This idea is used to investigate several specific models of the electroweak symmetry breaking sector. The phase transitions identified through this method suggest implications for other relics such as dark matter and gravitational waves.  相似文献   

7.
We analyse the phenomenology of an exemplary exophobic Pati-Salam heterotic string vacuum, in which no exotic fractionally charged states exist in the massless string spectrum. Our model also contains the Higgs representations that are needed to break the gauge symmetry to that of the Standard Model and to generate fermion masses at the electroweak scale. We show that the requirement of a leading mass term for the heavy generation, which is not degenerate with the mass terms of the lighter generations, places an additional strong constraint on the viability of the models. In many models a top quark Yukawa may not exist at all, whereas in others two or more generations may obtain a mass term at leading order. In our exemplary model a mass term at leading order exist only for one family. Additionally, we demonstrate the existence of supersymmetric F- and D-flat directions that give heavy mass to all the colour triplets beyond those of the Standard Model and leave one pair of electroweak Higgs doublets light. Hence, below the Pati-Salam breaking scale, the matter states in our model that are charged under the observable gauge symmetries, consist solely of those of the Minimal Supersymmetric Standard Model.  相似文献   

8.
We characterize models where electroweak symmetry breaking is driven by two light Higgs doublets arising as pseudo-Nambu-Goldstone bosons of new dynamics above the weak scale. They represent the simplest natural two Higgs doublet alternative to supersymmetry. We construct their low-energy effective Lagrangian making only few specific assumptions about the strong sector. These concern their global symmetries, their patterns of spontaneous breaking and the sources of explicit breaking. In particular we assume that all the explicit breaking is associated with the couplings of the strong sector to the Standard Model fields, that is gauge and (proto)-Yukawa interactions. Under those assumptions the scalar potential is determined at lowest order by very few free parameters associated to the top sector. Another crucial property of our scenarios is the presence of a discrete symmetry, in addition to custodial SO(4), that controls the T-parameter. That can either be simple CP or a Z2 that distinguishes the two Higgs doublets. Among various possibilities we study in detail models based on SO(6)/SO(4) × SO(2), focussing on their predictions for the structure of the scalar spectrum and the deviations of their couplings from those of a generic renormalizable two Higgs doublet model.  相似文献   

9.
The Higgs sector of the Standard Model offers a unique probe of the hidden sector. In this work, we explore the possibility of renormalizable Higgs couplings to the hidden sector vector fields which can constitute dark matter (DM). Abelian gauge sectors with minimal field content, necessary to render the gauge fields massive, have a natural Z2 parity. This symmetry ensures stability of the vector fields making them viable dark matter candidates, while evading the usual electroweak constraints. We illustrate this idea with the Stückelberg and Higgs mechanisms. Vector DM is consistent with the WMAP, XENON100, and LHC constraints, while it can affect significantly the invisible Higgs decay. Due to the enhanced branching ratio for the Higgs decay into the longitudinal components of the vector field, the vector Higgs portal provides an efficient way to hide the Higgs at the LHC. This could be the reason why the latest combined ATLAS/CMS data did not bring evidence for the existence of the Higgs boson.  相似文献   

10.
11.
In this talk, I shall first discuss the Standard Model Higgs mechanism and then highlight some of its deficiencies making a case for the need to go beyond the Standard Model (BSM). The BSM tour will be guided by symmetry arguments. I shall pick up four specific BSM scenarios, namely, supersymmetry, little Higgs, gauge-Higgs unification, and the Higgsless approach. The discussion will be confined mainly on their electroweak symmetry breaking aspects.   相似文献   

12.
In this paper we propose a possible explanation to the Fermion mass hierarchy problem by fitting the type-II seesaw mechanism into the Higgs doublet sector, such that their vacuum expectation values are hierarchal. We extend the Standard Model with two extra Higgs doublets as well as a spontaneously broken UX(1) gauge symmetry. All the fermion Yukawa couplings except that of the top quark are of O(10-2) in our model. Constraints on the parameter space of the model from low energy processes are studied. Besides, the lightest one of the neutral fermion fields, which is introduced to cancel the anomalies of the U(1)X gauge symmetry can be the cold dark matter candidate. We investigate its signature in the dark matter direct detection.  相似文献   

13.
Chao Guo  Shu-Yuan Guo  Yi Liao 《中国物理C(英文版)》2019,43(10):103102-103102-10
We study the phenomenology of a model that addresses the neutrino mass, dark matter, and generation of the electroweak scale in a single framework. Electroweak symmetry breaking is realized via the Coleman-Weinberg mechanism in a classically scale invariant theory, while the neutrino mass is generated radiatively through interactions with dark matter in a typically scotogenic manner. The model introduces a scalar triplet and singlet and a vectorlike fermion doublet that carry an odd parity of Z_2, and an even parity scalar singlet that helps preserve classical scale invariance. We sample over the parameter space by taking into account various experimental constraints from the dark matter relic density and direct detection, direct scalar searches, neutrino mass, and charged lepton flavor violating decays. We then examine by detailed simulations possible signatures at the LHC to find some benchmark points of the free parameters. We find that the future high-luminosity LHC will have a significant potential in detecting new physics signals in the dilepton channel.  相似文献   

14.
We present the first version of a new tool to scan the parameter space of generic scalar potentials, ScannerS (Coimbra et al., ScannerS project., 2013). The main goal of ScannerS is to help distinguish between different patterns of symmetry breaking for each scalar potential. In this work we use it to investigate the possibility of excluding regions of the phase diagram of several versions of a complex singlet extension of the Standard Model, with future LHC results. We find that if another scalar is found, one can exclude a phase with a dark matter candidate in definite regions of the parameter space, while predicting whether a third scalar to be found must be lighter or heavier. The first version of the code is publicly available and contains various generic core routines for tree level vacuum stability analysis, as well as implementations of collider bounds, dark matter constraints, electroweak precision constraints and tree level unitarity.  相似文献   

15.
16.
We consider a model where two new scalars are introduced in the standard model, assuming classical scale invariance. In this model the scale invariance is broken by quantum corrections and one of the new scalars acquires non-zero vacuum expectation value (VEV), which induces the electroweak symmetry breaking in the standard model, and the other scalar becomes dark matter. It is shown that TeV scale dark matter is realized, independent of the value of the other scalar?s VEV. The impact of the new scalars on the Higgs potential is also discussed. The Higgs potential is stabilized when the Higgs mass is over ∼120 GeV.  相似文献   

17.
A heavy fourth generation with a mass of the order of 400 GeV or more could trigger dynamical electroweak symmetry breaking by forming condensates through the exchange of a fundamental Higgs scalar doublet. The dynamics leading to these condensates is studied within the framework of the Schwinger–Dyson equation. This scenario leads to the presence of three (two composite and one fundamental) Higgs doublets, with interesting phenomenological implications. In addition, this dynamical phenomenon occurs in the vicinity of the energy scale where the restoration of scale symmetry might happen.  相似文献   

18.
It is generally believed that the low energy effective theory of the minimal supersymmetric standard model is the type 2 two Higgs doublet model.We will show that the type 1 two Higgs doublet model can also be as the effective of supersymmetry in a specific case with high scale supersymmetry breaking and gauge mediation.If the other electroweak doublet obtain the vacuum expectation value after the electroweak symmetry breaking,the Higgs spectrum is quite different.A remarkable feature is that the physical Higgs boson mass can be 125 GeV unlike in the ordinary models with high scale supersymmetry in which the Higgs mass is generally around 140 GeV.  相似文献   

19.
It is generally believed that the low energy effective theory of the minimal supersymmetric standard model is the type 2 two Higgs doublet model. We will show that the type 1 two Higgs doublet model can also be as the effective of supersymmetry in a specific case with high scale supersymmetry breaking and gauge mediation. If the other electroweak doublet obtain the vacuum expectation value after the electroweak symmetry breaking, the Higgs spectrum is quite different. A remarkable feature is that the physical Higgs boson mass can be 125 GeV unlike in the ordinary models with high scale supersymmetry in which the Higgs mass is generally around 140 GeV.  相似文献   

20.
We consider the extended Higgs models, in which one of the isospin doublet scalar fields carries the hypercharge Y=3/2. Such a doublet field Φ3/2 is composed of a doubly charged scalar boson as well as a singly charged one. We first discuss a simple model with Φ3/2 (Model I), and study its collider phenomenology at the LHC. We then consider a new model for radiatively generating neutrino masses with a dark matter candidate (Model II), in which Φ3/2 and an extra Y=1/2 doublet as well as vector-like singlet fermions carry the odd quantum number for an unbroken discrete Z2 symmetry. We also discuss the neutrino mass model (Model III), in which the exact Z2 parity in Model II is softly broken. It is found that the doubly charged scalar bosons in these models show different phenomenological aspects from those which appear in models with a Y=2 isospin singlet field or a Y=1 triplet one. They could be clearly distinguished at the LHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号