首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We investigate tunneling and self-trapping of superfluid Fermi gases under a two-mode ansatz in different regimes of the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluid to Bose-Einstein condensates (BEC). Starting from a generalized equation of state, we derive the coupled equations of relative atom-pair number and relative phase about superfluid Fermi gases in a double-well system and then classify the different oscillation behaviors by the
tunneling strength and interactions between atoms. Tunneling and self-trapping behaviors are considered in the whole BCS-BEC crossover in the case of a symmetric double-well potential. We show that the nonlinear interaction between atoms makes the self-trapping more easily realized in BCS regime than in the BEC regime and stability analysis is also given.  相似文献   

2.
The exact solution for the electromagnetic field occuring when the Kerr–Taub–NUT compact object is immersed (i) in an originally uniform magnetic field aligned along the axis of axial symmetry (ii) in dipolar magnetic field generated by current loop has been investigated. Effective potential of motion of charged test particle around Kerr–Taub–NUT gravitational source immersed in magnetic field with different values of external magnetic field and NUT parameter has been also investigated. In both cases presence of NUT parameter and magnetic field shifts stable circular orbits in the direction of the central gravitating object. Finally we find analytical solutions of Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star. The star is considered isolated and in vacuum, with monopolar configuration model for the stellar magnetic field.  相似文献   

3.
郑强  易善峰  胡长刚 《中国物理 B》2014,23(2):26401-026401
The effect of decoherence on the phase transition of a Bose-Einstein condensate in a symmetric double-well potential is determined by the mean atom number difference. It still has two phases, the tunneling phase and the self-trapping phase, even under decoherence. The density matrix and the operator fidelity also show very different behaviors in the two phases. This suggests that operator fidelity can be used to characterize the phase transition of this Bose-Einstein condensate model, even under decoherence.  相似文献   

4.
袁野  田博博  段纯刚 《物理学报》2018,67(15):157511-157511
钙钛矿结构BiMnO_3作为同时具有铁电性与铁磁性的多铁材料,在人工神经网络方面可以作为一种潜在的人工突触材料,从而设计出新型多铁人工突触器件.本文使用第一性原理计算的方法,分别研究了四方相BiMnO_3在xy面内施加0.18%与4%应力条件下的铁电情况,以及Mn原子磁矩随着铁电极化强度变化的曲线.结果表明,在四方相多铁BiMnO_3中,Mn原子磁矩会随着极化强度的增强而增大,表示其铁磁性可以在一定程度上由其铁电极化来进行调控,并且应力越大,其磁矩变化范围就越大.这一结果使得多铁BiMnO_3在人工突触器件设计方面拥有潜在的应用价值,多铁性使其在作为人工突触器件材料中具有更多可调控的自由度,从而可用于模拟多突触连接.这可为将来构造类脑芯片打下一定的理论基础.  相似文献   

5.
We study theoretically the ultracold two-component fermionic gases when a gradient magnetic field is used to tune the scattering length between atoms. For 6Li at the narrow resonance B0=543.25 G, it is shown that the gases would be in a coexistence of the regimes of BCS, Bose-Einstein condensation (BEC), and unitarity limit with the present experimental technique. In the case of thermal and chemical equilibrium, we investigate the density distribution of the gases and show that a double peak of the density distribution can give us a clear evidence for the coexistence of BCS, BEC, and unitarity limit.  相似文献   

6.
提出了一种新的采用载流导线的表面双磁光阱(MOT)方案(即双U型导线磁光阱方案)。通过改变中间U型导线中的电流大小,即可将一个双磁阱连续地合并为一个单磁阱,反之亦然。详细计算和分析了上述双U型载流导线磁光阱方案的磁场及其梯度的空间分布,研究发现当导线中的电流为600 A,z方向均匀偏置磁感应强度为-4.0×10-3 T时,双U型导线方案产生的两个磁阱中心的磁场梯度约为1.5×10-3~2.5×10-3 T/cm,结合通常制备磁光阱时所用的三维粘胶(Molasses)光束即可在基底表面附近形成一双磁光阱。理论分析表明在弱光近似下,每个磁光阱中所能俘获的85Rb原子数约为106 量级,相应的磁光阱温度约为270μK。由于双磁光阱可以独立制备,所以双U型导线方案特别适用于制备双样品磁光阱,并用于研究双原子样品的冷碰撞性质。  相似文献   

7.
The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation (GGA) and the GGA+U approach. Our results show that the structural stability, electronic properties and magnetic properties of C-doped SrTiO3 strongly depend on the distance between carbon dopants. In both GGA and GGA+U calculations, the doping structure is mostly stable with a nonmagnetic feature when the carbon dopants are nearest neighbors, which can be ascribed to the formation of a C–C dimer pair accompanied by stronger C–C and weaker C–Ti hybridizations as the C–C distance becomes smaller. As the C–C distance increases, C-doped SrTiO3 changes from an n-type nonmagnetic metal to ferromagnetic/antiferromagnetic half-metal and to an antiferromagnetic/ferromagnetic semiconductor in GGA calculations, while it changes from a nonmagnetic semiconductor to ferromagnetic half-metal and to an antiferromagnetic semiconductor using the GGA+U method. Our work demonstrates the possibility of tailoring the magnetic and electronic properties of C-doped SrTiO3, which might provide some guidance to extend the applications of strontium titanate as a magnetic or optoelectronic material.  相似文献   

8.
The Klein–Fock–Gordon equation is solved for a 2D pion moving in a constant uniform magnetic field. A relativistic energy spectrum is calculated for fixed values of the angular momentum and magnetic field Н. An analysis of the results of these calculations allows us to conclude that the Klein–Fock–Gordon equation, unlike the Schr?dinger equation, cannot describe the energy of the particle s-state in the magnetic field. It is elucidated that a correction for the relativistic energy level caused by the constant magnetic field is noticeable for the magnetic field H > 100. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 91–96, March, 2009.  相似文献   

9.
The spin-orbit coupled lattice system under Zeeman fields provides an ideal platform to realize exotic pairing states. Notable examples range from the topological superfluid/superconducting (tSC) state, which is gapped in the bulk but metallic at the edge, to the Fulde–Ferrell (FF) state (having a phase-modulated order parameter with a uniform amplitude) and the Larkin–Ovchinnikov (LO) state (having a spatially varying order parameter amplitude). Here, we show that the topological FF state with Chern number (C=−1) (tFF1) and topological LO state with C= 2 (tLO2) can be stabilized in Rashba spin-orbit coupled lattice systems in the presence of both in-plane and out-of-plane Zeeman fields. Besides the inhomogeneous tSC states, in the presence of a weak in-plane Zeeman field, two topological BCS phases may emerge with C=−1 (tBCS1) far from half filling and C= 2 (tBCS2) near half filling. We show intriguing effects such as different spatial profiles of order parameters for FF and LO states, the topological evolution among inhomogeneous tSC states, and different non-trivial Chern numbers for the tFF1 and tLO1,2 states, which are peculiar to the lattice system. Global phase diagrams for various topological phases are presented for both half-filling and doped cases. The edge states as well as local density of states spectra are calculated for tSC states in a 2D strip.  相似文献   

10.
Szymański  K.  SatuŁa  D.  Dobrzyński  L.  Perzyńska  K. 《Hyperfine Interactions》2001,136(3-8):165-169
Monochromatic, circularly polarized radiation brings useful information on orientations of hyperfine fields in investigation of magnetic materials. This information can be extracted even from poorly resolved spectra by a model free method. In particular, the z-component of the average hyperfine magnetic field is given simply by a “center of gravity” of the difference between the spectra measured with two opposite polarizations. The efficiency of such an approach is demonstrated on the example of the 57Fe h.m.f. in bcc Cr–Fe–Mn alloys. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

11.
The influence of the orientational fluctuations of the electronic magnetization, which modulate nuclear spin–spin interactions (Suhl–Nakamura and dipole–dipole), on the spin-lattice relaxation of magnetic nuclei with spin I = 1/2 in the magnetically ordered solids has been investigated. It has been shown that this mechanism of the spin-lattice relaxation is less effective in comparison with the process of spin-lattice relaxation caused by the direct fluctuations of hyperfine fields, which appear when there are the fluctuations of electronic magnetization direction.  相似文献   

12.
The properties of two-dimensional magnetic traps for laser-cooled atoms are analysed using complex functions. The two components of the magnetic field from a series of parallel, infinitely long, current-carrying wires are represented by a single complex number. The regions of the field where paramagnetic atoms can be trapped occur where the magnetic field is zero. The locations of the zeroes of the field are obtained as the solution to a polynomial and the multiplicity m of the solution determines both the 2(m + 1)-pole nature of the trap and the field gradient through the centre. The zeroes of the field can be merged or split by varying the locations of the currents, their strengths or by applying a uniform magnetic field. The theory is applied to magnetic traps created from long thin wires or permanent magnets on a substrate. The properties of a number of magnetic trap configurations used for atom guides are discussed. Received 28 February 2001 and Received in final form 6 July 2001  相似文献   

13.
We introduce a discrete model describing the motion of a zigzag domain wall in a disordered ferromagnet with in-plane magnetization, driven by an external magnetic field. The main ingredients are dipolar interactions and anisotropy. We investigate the dynamic hysteresis by analyzing the effects of external field frequency on the coercive field by Monte Carlo simulations. Our results are in good agreement with experiments on Fe/GaAs films reported in literature, and we conclude that dynamic hysteresis in this case can be explained by a single propagating domain wall model without invoking domain nucleation.  相似文献   

14.
A dynamic probing of magnetic liquids is performed experimentally, using a static magnetic field modulated by another smaller field, normal and alternating. The optical magneto-birefringence under these crossed magnetic fields is recorded as a function of the frequency for different field intensities and different sizes of the magnetic nanoparticles. A general reduced behavior is found for the in-phase and the out-of-phase optical response which is well-described by a simple mechanical model. Depending on the value H ani of the anisotropy field of the nanoparticles, we can distinguish two different high magnetic field regimes: - a rigid dipole regime (large anisotropy energy with respect to k B T) for cobalt ferrite nanoparticles with a relaxation time inversely proportional to the field intensity H C(H C < H ani), - a soft dipole regime (anisotropy energy of the order of k B T) for maghemite nanoparticles with a relaxation time independent of the field intensity H C(H C > H ani). Received 5 June 2000 and Received in final form 8 January 2001  相似文献   

15.
Wei Jiang 《中国物理 B》2021,30(12):127501-127501
We theoretically provide a magnetic phase diagram for the single-layer (SL) CrBr3, which could be effectively tuned by both strain engineering and charge doping in SL-CrBr3. Through systematical first-principles calculations and Heisenberg model Hamiltonian simulations, three different magnetic phases in SL-CrBr3, which are off-plane ferromagnetic, in-plane ferromagnetic and in-plane Néel-antiferromagnetic phases, are found in the strain and charge doping regimes we studied. Furthermore, our results show that higher order Heisenberg exchange parameters and anisotropy exchange parameters should be taken into account for accurately illustrating the magnetic phase transition in SL-CrBr3. As a result, we find from the SpinW simulation that the Curie temperature is about Tc=38.4 K, which is well consistent with the experimental result 34 K[Nano Lett. 19 3138 (2019)]. The findings here may be confirmed in future experiments, and may be useful for the potential applications of SL-CrBr3 in spintronics field.  相似文献   

16.
A new analysis of the renormalized proton–neutron quasiparticle random phase approximation based on simultaneous recalculation of the one-body density matrix and the pairing tensor has been used to study the double beta decay. We demonstrated that inclusion of the quasiparticle correlations at the BCS level reduces ground state correlations in the particle–particle channel of the proton–neutron interaction. We also simplified the RQRPA equations significantly obtaining a low-dimensioned set of linear equations for the quasiparticle densities. The formalism was applied to the double beta decay of 76Ge. Received: 4 January 1999 / Revised version: 29 March 1999  相似文献   

17.
We discuss the dynamics of two weakly coupled Bose-Einstein condensates in a double-well potential, contrasting the mean-field picture to the exact N-particle evolution. On the mean-field level, a self-trapping transition occurs when the scaled interaction strength exceeds a critical value; this transition essentially persists in small condensates comprising about 1000 atoms. When the double-well is modulated periodically in time, Floquet-type solutions to the nonlinear Schr?dinger equation take over the role of the stationary mean-field states. These nonlinear Floquet states can be classified as “unbalanced” or “balanced”, depending on whether or not they entail long-time confinement of most particles to one well. Since the emergence of unbalanced Floquet states depends on the amplitude and frequency of the modulating force, we predict that the onset of self-trapping can efficiently be controlled by varying these parameters. This prediction is verified numerically by both mean-field and N-particle calculations. Received 5 November 2000 and Received in final form 16 February 2001  相似文献   

18.
The parasitic oscillation of the TE°21 gyrotron backward-wave (gyro BW) mode is observed in a low-Q, 8 GHz TE°011, gyrotron. At low power (PBW<5 kW), the oscillation of the gyro BW mode, simultaneously with the gyrotron mode, results in a maximum TE°011, mode efficiency of less than 0.25. The parasitic oscillation is suppressed by operating the gyrotron with a negative magnetic field gradient along the electron beam, which allows the maximum efficiency to reach 0.40 and the output power to be multiplied by a factor varying from 1.4 to 1.7. The optimum efficiency curve of the TE°011 mode indicates that the low-Q cavity behaves as a much higher Qdiff cavity. Excessive values of magnetic field gradient and α favor the TE°012 , longitudinal mode, which oscillates in place of the TE°011 mode and limits its maximum output power. This competitive process is responsible for the high-Q-like behavior of the optimum efficiency curve  相似文献   

19.
姜恩海  朱兴凤  陈凌孚 《物理学报》2015,64(14):147301-147301
基于第一性原理计算方法系统地研究了L21B2结构下的Heusler合金Co2MnAl(100)表面原子的原子弛豫、电子结构、磁性和自旋极化行为. L21B2结构的Co2MnAl(100)表面由于Co–Mn和Co–Al的成键差异, 使得不同原子分别发生不同程度的伸缩. 与块体相比, Co和Mn原子的自旋磁矩由于表面效应而明显增大, 电子结构计算显示L21结构块体中的带隙被表面态破坏, 表面效应使得两种结构的CoCo端面自旋极化率降低, 但MnAl端面并未受到显著影响, 呈现了较大的自旋极化, 预测其在隧道结中可能具有很好的应用潜力.  相似文献   

20.
We present the Dirac and Laplacian operators on Clifford bundles over space–time, associated to metric compatible linear connections of Cartan–Weyl, with trace-torsion, Q. In the case of nondegenerate metrics, we obtain a theory of generalized Brownian motions whose drift is the metric conjugate of Q. We give the constitutive equations for Q. We find that it contains Maxwell’s equations, characterized by two potentials, an harmonic one which has a zero field (Bohm-Aharonov potential) and a coexact term that generalizes the Hertz potential of Maxwell’s equations in Minkowski space.We develop the theory of the Hertz potential for a general Riemannian manifold. We study the invariant state for the theory, and determine the decomposition of Q in this state which has an invariant Born measure. In addition to the logarithmic potential derivative term, we have the previous Maxwellian potentials normalized by the invariant density. We characterize the time-evolution irreversibility of the Brownian motions generated by the Cartan–Weyl laplacians, in terms of these normalized Maxwell’s potentials. We prove the equivalence of the sourceless Maxwell equation on Minkowski space, and the Dirac-Hestenes equation for a Dirac-Hestenes spinor field written on Minkowski space provided with a Cartan–Weyl connection. If Q is characterized by the invariant state of the diffusion process generated on Euclidean space, then the Maxwell’s potentials appearing in Q can be seen alternatively as derived from the internal rotational degrees of freedom of the Dirac-Hestenes spinor field, yet the equivalence between Maxwell’s equation and Dirac-Hestenes equations is valid if we have that these potentials have only two components corresponding to the spin-plane. We present Lorentz-invariant diffusion representations for the Cartan–Weyl connections that sustain the equivalence of these equations, and furthermore, the diffusion of differential forms along these Brownian motions. We prove that the construction of the relativistic Brownian motion theory for the flat Minkowski metric, follows from the choices of the degenerate Clifford structure and the Oron and Horwitz relativistic Gaussian, instead of the Euclidean structure and the orthogonal invariant Gaussian. We further indicate the random Poincaré–Cartan invariants of phase-space provided with the canonical symplectic structure. We introduce the energy-form of the exact terms of Q and derive the relativistic quantum potential from the groundstate representation. We derive the field equations corresponding to these exact terms from an average on the invariant state Cartan scalar curvature, and find that the quantum potential can be identified with 1 / 12R(g), where R(g) is the metric scalar curvature. We establish a link between an anisotropic noise tensor and the genesis of a gravitational field in terms of the generalized Brownian motions. Thus, when we have a nontrivial curvature, we can identify the quantum nonlocal correlations with the gravitational field. We discuss the relations of this work with the heat kernel approach in quantum gravity. We finally present for the case of Q restricted to this exact term a supersymmetric system, in the classical sense due to E.Witten, and discuss the possible extensions to include the electromagnetic potential terms of Q  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号