首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 398 毫秒
1.
The ruthenium(II) complex Ru(CO)2(NH2(NH2CH2C6H5)2(Si(C6H5)(CH3)2)I has been prepared by the reaction of Ru(CO)4(Si(C6H5)(CH3)2)I with benzylamine. Two-dimensional homonuclear 1H NMR experiments examine the scalar coupling of the enantiotopic amino and methylene protons of the benzylamine ligand. X-ray analysis of Ru(CO)2(NH2CH2C6H5)2(Si(C6H5)(CH3)2)I·1/3C5H12 (triclinic; P ; a = 14.266(4), b = 15.748(5), c = 20.082(6) Å; = 94.38(3), β = 96.30(2), γ = 101.52(2)°) indicates three crystallographically unique complexes form a clathrate with a pentane guest.  相似文献   

2.
The reactions of the half-sandwich molybdenum(III) complexes CpMo(η4-C4H4R2)(CH3)2, where Cp=η5-C5H5 and R=H or CH3, with equimolar amounts of B(C6F5)3 have been investigated in toluene. EPR monitoring shows the formation of an addition product which does not readily react with Lewis bases such as ethylene, pyridine, or PMe3. The analysis of the EPR properties and the X-ray structure of a decomposition product obtained from dichloromethane, [CpMo(η4-C4H6)(μ-Cl)(μ-CH2)(O)MoCp][CH3B(C6F5)3], indicate that the borane attack has occurred at the methyl position.  相似文献   

3.
LnCl3 (Ln=Nd, Gd) reacts with C5H9C5H4Na (or K2C8H8) in THF (C5H9C5H4 = cyclopentylcyclopentadienyl) in the ratio of 1 : to give (C5H9C5H4)LnCl2(THF)n (orC8H8)LnCl2(THF)n], which further reacts with K2C8H8 (or C5H9C5H4Na) in THF to form the litle complexes. If Ln=Nd the complex (C8H8)Nd(C5H9C5H4)(THF)2 (a) was obtained: when Ln=Gd the 1 : 1 complex [(C8H8)Gd(C%H9)(THF)][(C8H8)Gd(C5H9H4)(THF)2] (b) was obtained in crystalline form.

The crystal structure analysis shows that in (C8H8)Ln(C5H9C5H4)(THF)2 (Ln=Nd or Gd), the Cyclopentylcyclopentadieny (η5), cyclooctatetraenyl (η8) and two oxygen atoms from THF are coordinated to Nd3+ (or Gd3+) with coordination number 10.

The centroid of the cyclopentadienyl ring (Cp′) in C5H9C5H4 group, cyclooctatetraenyl centroid (COTL) and two oxygens (THF) form a twisted tetrahedron around Nd3+ (or Gd3+). In (C8H8)Gd(C5H9C5H4)(THF), the cyclopentyl-cyclopentadienyl (η5), cyclooctatetraenyl (η8) and one oxygen atom are coordinated to Gd3+ with the coordination number of 9 and Cp′, COT and oxygen atom form a triangular plane around Gd3+, which is almost in the plane (dev. -0.0144 Å).  相似文献   


4.
The complex C5H5(PMe3)Co(μ-CS)2CoC5H5 (I) is formed by the reaction of C5H5Co(PMe3)CS and CH2I2. The X-ray structure analysis shows an unsymmetrical non-planar Co2C2-skeleton with different Co---C bond lengths. The Co---Co distance is 239.2 pm. Compound I thus represents a new example of binuclear (18 + 16)-electron complexes in which the more electron-rich metal atom forms a donor bond to the more electron-poor counterpart. The reaction of I with ligands such as P(NMe2)3 does not lead to bridge cleavage indicating the stability of the Co(CS)2Co-framework.  相似文献   

5.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

6.
Reaction of YbI2 with two equivalents of cyclopentylindenyl lithium (C5H9C9H6Li) affords ytterbium(II) substituted indenyl complex (C5H9C9H6)2Yb(THF)2 (1) which shows high activity to ring-opening polymerization (ROP) of lactones. The reaction between YbI2 and cyclopentylcyclopentadienyl sodium (C5H9C5H4Na) gives complex [(C5H9C5H4)2Yb(THF)]2O2 (2) in the presence of a trace amount of O2, the molecular structure of which comprises two (C5H9C5H4)2Yb(THF) bridged by an asymmetric O2 unit. The O2 unit and ytterbium atoms define a plane that contains a Ci symmetry center.  相似文献   

7.
Thermal displacement of coordinated nitriles RCN (R = CH3, C2H5 or n-C3H7) in [C5H5Fe(L2)(NCR)]X complexes (L2 = P(OCH3)3)2, (P(OC6H5)3)2 or (C6H5)2PC2H4P(C6H5)2 (DPPE)) by E(CH3)2 affords high yields of [C5H5Fe(L2)(E(CH3)2)]X compounds (E = S, Se and Te; X = BF4 or PF6). Spectroscopic data and ligand displacement reactions are presented and discussed together with related observations on [C5H5Fe(CO)2(E(CH3)2)]BF4 compounds. The molecular structure of [C5H5Fe(P(OCH3)3)2(S(CH3)2)]PF6 was determined by a single-crystal X-ray diffraction study: monoclinic, space group P21/n-C52h (No. 14) with a = 8.4064(12), b = 11.183(2), c = 50.726(8) Å, β = 90.672(13)° and Z = 8 molecules per unit cell. The coordination sphere of the iron atom is pseudo-tetrahedral with an Fe---S bond distance of 2.238 Å.  相似文献   

8.
The singlet-triplet separations for the edge-sharing bioctahedral (ESBO) complex W2(μ-H)(μ-Cl)(Cl4(μ-dppm)2 · (THF)3 (II) has been studied by 31P NMR spectroscopy. The structural characterization of [W2(μ-H)2(μ-O2CC6H5)2Cl2(P(C6H5)3)2] (I) by single-crystal X-ray crystallography has allowed the comparison of the energy of the HOMOLUMO separation determined using the Fenske-Hall method for a series of ESBO complexes with two hydride bridging atoms, two chloride bridging atoms and the mixed case with a chloride and hydride bridging atom. The complex representing the mixed case, [W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 · (THF)3] (II), has been synthesized and the value of −2J determined from variable-temperature 31P NMR spectroscopy.  相似文献   

9.
The complex [MoW(μ-CC6H4Me-4)(CO)27-C7H7)(η5-C2B9H10Me)] reacts with diazomethane in Et2O containing EtOH to afford the dimetal compound [MoW(OEt)(μ-CH2){μ-C(C6H4Me-4)C(Me)O}(η7-C7H7)(η5-C2B9H10Me)]. The structure of this product was established by X-ray diffraction. The Mo---W bond [2.778(4) Å] is bridged by a CH2 group [μ-C---Mo 2.14(3), μ-C---W 2.02(3) Å] and by a C(C6H4Me-4)C(Me)O fragment [Mo---O 2.11(3), W---O 2.18(2), Mo---C(C6H4Me-4) 2.41(3), W---C(C6H4Me-4) 2.09(3), Mo---C(Me) 2.26(3) Å]. The molybdenum atom is η7-coordinated by the C7H7 ring and the tungsten atom is η5-coordinated by the open pentagonal face of the nido-icosahedral C2B9H10Me cage. The tungsten atom also carries a terminally bound OEt group [W---O 1.88(3) Å]. The 1H and 13C-{1H} NMR data for the dimetal compound are reported and discussed.  相似文献   

10.
The crystal structure of Cp2TiC6H5CN-2,6-(CH3)2C6H3 is reported. The iminoacyl ligand is η2-coordinated at the metal (Ti---C 2.096(4), Ti---N 2.149(4) Å). The cyclopentadienyl ligands show the normal bent Cp2Ti structure.  相似文献   

11.
The synthesis of the potential bridging ligand (C6H5)2PCH2CH2Si(CH3)2C5H4 (3) is described. The ferrocene (6 derived from 3 has been found to form macrocyclic complexes with metal fragments NiCl2, NiBr2, and Co2(CO)6. Although monomeric, bimetallic products might have been expected based upon the reduced steric demands of ligand 3 relative to an analogous ligand, (C6H5)2PCH2Si(CH)3)2C5H4 (1), it appears that the increased flexibility in 3 is the overriding factor leading to a preference for inter- rather than intramolecular coordination of the second phosphine function in 6.  相似文献   

12.
The complex (di-η5-C5H4CH2CH2CH2C5H4)Ti(η1-C5H5)2 (I) can be obtained unambiguously starting from the corresponding bridged titanocene dichloride. Attempts to synthesize the isomeric compounds (η5-C5H5)2 Ti(di-η1-C5H4-CH2CH2CH2C5H4) (I′) by the action of a convenient bridged dianion on (C5H5)2 TiCl2 afford several compounds, one of them is the complex I. The possibility of interconversion of these complexes by a fluctional process is discussed.  相似文献   

13.
The title complex Mn2(CO)6(μ-H){μ-S(SC3H5)C=C(PPr3i)S} was synthesized by allyation of the homobinuclear anion [Mn2(CO)6(μ-H){μ-S(SC3H5)C=C(PPr3i)S}]−1, and characterized by elemental analysis, IR, 1H NMR and 31P NMR spectra. The molecular structure shows that it contains a novel fairly planar ligand S(S)C=C(PPr3i)S, and the two Mn(CO)3 fragments are symmetrically placed at both sides of the plane of the ligand.  相似文献   

14.
The cationic diphenylphosphido-bridged compound [Ru2(μ-PPh2)(μ-OH)26-p-cymene)2][PF6) (2) has been prepared by reaction of the tri-μ-hydroxo complex [Ru2(μ-OH)3(η-p-cymene)2][PF6] (1) with diphenylphosphine. Complex 2 eliminates water on reaction with protic acids, incorporating the conjugate base of the added acid as a bridging ligand. Formic acid, acetic acid, phenol, and aniline react with 2 to give the monosubstituted compounds [Ru2(μ-PPh2)(μ-OH)(μ-L)(η6-p-cymene)2]PF6] (L = HCO2, MeCO2, OPh, or NHPH), whereas methanol, thiophenol, 1,2-benzenedithiol, hydrochloric acid and isopropanol afford the disubstituted derivatives [Ru2(μ-PPh2)(μ-L)26-p-cymene)2]PF6] (L = OMe, SPh, S2C6H4, Cl, or H).  相似文献   

15.
The effects of cyclopentadienyl ring size on the geometry of bimetallic organosamarium complexes have been studied by comparing the X-ray crystal structure of [(C5H4Me)2(THF)Sm(μ-Cl)]2, prepared from KC5H4Me and SmCl3 in THF, with C5Me5 analogs. The complex crystallizes from THF at −30°C in space group Pbcn with a = 20.312(5), b = 9.626(2), c = 16.225(3) Å, V = 3172.5(12) Å3 and Dcalc = 1.74 g cm−3 for Z = 4. Least-squares refinement of the model based on 1759 reflections [|Fo| > 2.0σ(|Fo|)] converged to a final RF = 5.0%. The complex adopts a geometry which has a molecular two-fold rotation axis perpendicular to the Sm2Cl2 plane and a crystallographic inversion center. Hence, both methyl groups of each (C5H4Me)2Sm unit are located on the side opposite of the THF ligands, which are trans to each other, and the four C5H4Me ring centroids define a square plane. The Sm---Cl distances are 2.759(3) and 2.819(3) Å.  相似文献   

16.
The compounds C5H5Co(η2-CH3CHS)PMe3 (I) and C5H5Co(η2-CH3CHSe)PMe3 (II) are prepared from C5H5Co(CO)PMe3, CH3CHBr2 and NaSH or NaSeH, respectively. The synthesis of the corresponding rhodium complexes C5H5Rh(η2-CH3CHS)P(i-Pr)3 (VI) and C5H5Rh(η2-CH3CHSe)P(i-Pr)3 (VII) has been achieved through hydrogenation of C5H5Rh(η2-EC=CH2)P(i-Pr)3 (E = S, Se), using RhCl(PPh3)3 as a catalyst. The crystal structure of VII has been determined.  相似文献   

17.
A series of heterodimetallic complexes of general formula (C5R5)M(μ-CO)3RuC5Me5 (M = Cr, Mo, W; R = Me, Et) has been prepared in good yields by the reaction of [C5R5M(CO)3] with [C5Me5Ru(CH3CN)3]+. (C5Me4Et)W(μ-CO)3Ru(C5Me5) was characterized by a crystal structure determination. The W---Ru bond length of 2.41 Å is consistent with the formulation of a metal-metal triple bond, while the unsymmetrical bonding mode of the three bridging carbonyl groups reflects the inherent non-equivalence of the two different C5R5M-units. Using [CpRu(CH3CN)3]+ or [CpRu(CO)2(CH3CN)]+ as the cationic precursor leads to the formation of dimetallic species (C5R5)M(CO)5RuC5H5 with both bridging and terminal carbonyl groups.  相似文献   

18.
An unexpected trimanganese(I) tetrathiolate-bridged complex, [Mn3(CO)9(μ-SC6H5)4], with an incomplete cubane structure, was obtained by thermal reaction of [Mn2(CO)10] with [Mo(η5-C5H5)2(SC6H5)2]. The structure, established by single-crystal X-ray diffraction studies, shows the cation, [Mo(η5-C5H5)2(H)CO]+, directed towards the vacant site of the cubane structure. Possible routes by which the anion and the cation could be formed are discussed.  相似文献   

19.
The infrared spectra of solid samples of C4H7K and C4D7K have been investigated in the 4000 to 30 cm−1 range. A complete assignment of intramolecular fundamentals of C4H7 and C4D7 ions and of potassium-allyl vibrations is proposed and the intramolecular force constants are calculated. The C(CH2)32− anion has been identified spectroscopically. Structures of C3H5, C4H7 and C(CH3)32− are discussed and compared with those optimised by the MINDO/3 method.  相似文献   

20.
Novel isonitrile derivatives of a diruthenium carbonyl complex, (μ235-guaiazulene)Ru2(CO)5 (2), were synthesized by substitution of a CO ligand by an isonitrile, and were subjected to studies on thermal and photochemical haptotropic interconversion. Treatment of 2 (a 45:55 mixture of two haptotropic isomers, 2-A and 2-B) with RNC at room temperature resulted in coordination of RNC and alternation of the coordination mode of the guaiazulene ligand to form (μ215-guaiazulene)Ru2(CO)5(CNR), 5d–5f, [5d; R=tBu, 5e; 2,4,6-Me3C6H2, or 5f; 2,6-iPr2C6H3] in moderate to good yields. Thermal dissociation of a CO ligand from 5 at 60 °C resulted in quantitative formation of a desirable isonitrile analogue of 2, (μ235-guaiazulene)Ru2(CO)4(CNR), 4d–4f, [4d; R=tBu, 4e; 2,4,6-Me3C6H2, or 4f; 2,6-iPr2C6H3], as a 1:1 mixture of the two haptotropic isomers. A direct synthetic route from 2 to 4d–4f was alternatively discovered; treatment of 2 with one equivalent of RNC at 60 °C gave 4d–4f in moderate yields. All of the new compounds were characterized by spectroscopy, and structures of 5d (R=tBu) and 4d-A (R=tBu) were determined by crystallography. Thermal and photochemical interconversion between the two haptotropic isomers of 4d–4f revealed that the isomer ratios in the thermal equilibrium and in the photostatic state were in the range of 48:52–54:46.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号