首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 875 毫秒
1.
锂离子电池阴极材料LiMn2-xZrxO4的性能表征   总被引:3,自引:0,他引:3  
采用高温固相法合成了掺杂改性的尖晶石型LiMn2-xZrxO4 (x= 0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10)作为锂离子电池阴极材料.通过X射线衍射和环境扫描电镜对材料的晶体结构和形貌进行了表征.从材料的晶体结构、恒流充放电测试和循环性能等方面分析了掺杂元素Zr在改善材料性能中的作用.实验表明,当Zr的掺杂量在x ≤ 0.06时,材料在保持较高容量的同时,循环性能得到了明显改善.其中LiMn1.98Zr0.02O4的性能最佳,50次循环后容量仍在113.8 mA•h•g-1以上.  相似文献   

2.
采用改进的高温固相法合成了阴阳离子复合掺杂改性的锂离子电池尖晶石结构正极材料LiMn1.98Cr0.02O4-yCly(y=0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10). 采用X射线衍射手段对材料的晶体结构进行了表征. 从材料的晶体结构、充放电容量、循环性能和倍率放电特性等方面分析了复合掺杂在稳定晶体结构和改善材料电化学性能方面的作用. 实验结果表明, 由于复合掺杂的综合作用, 改性后的材料既保持了高的初始容量, 又具有优良的循环性能, 倍率放电性能也得到了有效的改善. 其中LiMn1.98Cr0.02O3.96Cl0.04的综合性能最优, 初始放电比容量达到127 mA·h/g以上, 循环50次后仍有110 mA·h/g的放电比容量.  相似文献   

3.
采用水热法制备了Al掺杂的锂二次电池正极材料LiV3-xAlxO8,并用X射线衍射和扫描电镜对材料的晶体结构和形貌进行了表征.以50 mA·g-1进行恒流充放电测试,结果表明Al掺杂能够明显改善材料的电化学性能.在掺杂改性的LiV3-xAlxO8材料中,LiV2.93Al0.07O8的初始容量最高,达到325 mAh·g-1.当掺杂量为x=0.04时,材料的循环性能最佳.LiV2.96Al0.04O8经20次循环后仍保持179 mAh·g-1的比容量,且充放电效率始终维持在98%左右.  相似文献   

4.
锂离子电池正极材料LiV3-xMnxO8的水热合成与性能   总被引:1,自引:0,他引:1  
采用水热法制备了Mn掺杂改性的锂二次电池钒基层状正极材料LiV3-xMnxO8(x=0.00, 0.01, 0.02, 0.04, 0.06, 0.08, 0.10). 用X射线衍射(XRD)和扫描电镜(SEM)对材料的晶体结构和形貌进行表征, 并以50 mA·g-1的电流对材料进行恒流充放电测试. 研究了Mn掺杂对材料晶体结构和电化学性能的影响. 结果表明, Mn掺杂能够明显改善材料的电化学性能. 在掺杂改性的LiV3-xMnxO8材料中, LiV2.94Mn0.06O8的初始容量最高, 达到295 mAh·g-1. 当掺杂量控制在0.01≤x≤0.08范围内时, LiV3-xMnxO8材料均具有较好的循环性能和充放电可逆性, 经20次循环后放电比容量都保持在120 mAh·g-1以上, 40次循环后都保持在100 mAh·g-1以上, 且材料的充放电效率始终维持在93%以上.  相似文献   

5.
唐勇  廖钦林  郭祥安 《电化学》2013,(4):371-375
采用共沉淀-高温固相烧结法在900oC空气中煅烧,合成了层状复合掺杂型正极材料Li(Ni0.5Co0.2Mn0.3)1-2xTixNbxO2(x=0,0.002,0.005,0.01,0.02).通过扫描电镜(SEM)、X-射线衍射(XRD)和电化学测试等观察与研究掺杂元素对Li(Ni0.5Co0.2Mn0.3)O2的形貌结构和电化学性能的影响.结果表明,适量Ti、Nb掺入Li(Ni0.5Co0.2Mn0.3)O2,降低了材料的阳离子混排程度,且晶胞参数随着掺杂量的增加而增加.与未掺杂材料相比,Ti-Nb复合掺杂的样品具有更好的电性能和高温性能.当x=0.005时,材料的综合性能最好,方型铝壳电池3.0~4.2 V电位区间首次1C放电比容165.9 mAh.g-1,常温循环100周期容量保持率96.5%,55oC循环300周期容量保持率为92.6%,80oC/6 h高温存储后冷却2 h电池厚度膨胀率9.8%.  相似文献   

6.
铜掺杂五氧化二钒的制备及电化学性质   总被引:1,自引:0,他引:1  
采用沉淀法于300 和600 ℃制备了结晶状的Cu0.04V2O5材料. 扫描电镜显示, 300 ℃时制备的样品具有多孔特征, 而600 ℃时制备的样品具有很高的结晶度. X射线研究表明, 少量铜掺杂不会改变V2O5的正交晶体结构. 红外光谱研究表明, 300 ℃时制备的Cu0.04V2O5样品含有少量水. 热失重分析确定了样品中所含水分是以吸附水的形式存在, 1 mol材料分子吸附水的摩尔数约为0.18 mol. 铜掺杂显著改善了V2O5的结构稳定性, 进而提高了材料的充放电循环性能. 于600 ℃制备的样品在C/5.6倍率下具有160 mAh·g-1的可逆比容量, 但提高放电倍率明显降低了材料的循环性能. 于300 ℃制备的样品在C/5.6倍率时的循环性能不如600 ℃样品, 但该材料在C/1.9倍率时仍具有100 mAh·g-1左右的可逆比容量. 两种材料在电化学性能上的差异与材料的微结构有关. 低温样品在较高放电倍率时良好的循环性能得益于其多孔的微结构, 而高温样品由于其较高的结晶度而表现出优异的低倍率充放电性能.  相似文献   

7.
采用高温固相法制备LiFe1-xYbxPO4/C(x=0,0.06,0.08,0.10)锂离子电池正极材料,并用X射线衍射(XRD),扫描电镜(SEM),循环伏安测试(CV)及交流阻抗测试(EIS)等方法进行结构和电化学性能的测试。XRD分析结果表明LiFe1-xYbxPO4/C(x=0,0.06,0.08,0.10)样品具有橄榄石型晶体结构。Yb的掺杂导致LiFePO4晶格中c轴方向的P-O键长增加,其中x=0.08样品具有最长的P-O键长。SEM图表明Yb的掺杂可明显细化颗粒,其中x=0.08时样品粒径为200 nm,比未掺杂样品降低了约2.5倍。电化学性能测试表明,Yb的掺杂使样品的放电容量增加,循环稳定性能提高。在-20~40℃温度区间内,放电容量随温度的升高而增加,其中x=0.08的样品40℃时放电容量为150 mAh.g-1,但测试温度达到60℃时,放电容量急剧下降。EIS测试表明Yb的掺杂可以明显改善电极表面电化学反应的动力学性能,降低电荷转移电阻,提高交换电流密度。  相似文献   

8.
锂离子电池正极材料LiMnO2的掺杂及其电化学性能   总被引:1,自引:0,他引:1  
采用水热法合成了用于锂离子电池正极材料的LiMxMn1-xO2(M=Mg,Y,Zr)化合物.采用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等手段对材料的晶体结构和形貌进行了表征,材料的电化学性能通过恒流充放电和交流阻抗谱(EIS)进行测试,分析了掺杂元素在改善材料性能中的作用.结果表明,掺杂后的LiMxMn1-xO2正极材料循环性能优于未经掺杂的材料.其中以掺杂钇的Li0.99Mn0.979Y0.021O2正极材料循环性能最佳,在室温下,充放电电流密度为50 mA·g-1时,60次循环后放电容量为226.3 mAh·g-1.  相似文献   

9.
采用水热法合成了用于锂离子电池正极材料的LiMxMn1-xO2(M=Mg, Y, Zr)化合物. 采用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等手段对材料的晶体结构和形貌进行了表征, 材料的电化学性能通过恒流充放电和交流阻抗谱(EIS)进行测试, 分析了掺杂元素在改善材料性能中的作用. 结果表明, 掺杂后的LiMxMn1-xO2正极材料循环性能优于未经掺杂的材料. 其中以掺杂钇的i0.99Mn0.979Y0.021O2正极材料循环性能最佳, 在室温下, 充放电电流密度为50 mA·g-1时, 60次循环后放电容量为226.3 mAh·g-1.  相似文献   

10.
铈掺杂络合燃烧法制备Li1.05CexMn2-xO4材料及其电化学性能   总被引:2,自引:0,他引:2  
采用已二酸络合燃烧法制备了稀土Ce掺杂的锰酸锂材料Li1.05CexMn2-xO4粉体。利用XRD,SEM,EDS等对材料粉体进行结构形态表征,并以其为锂离子电池正极活性材料测试其充放电性能。实验结果表明:材料Li1.05CexMn2-xO4(x=0,0.01,0.02,0.03)具有较好的尖晶石结构,且颗粒分布均匀,掺杂的比未掺杂的比容量以及常温、高温下循环性能都有较大的改善。当掺杂量达到0.02(摩尔比)时材料的综合性能较好,其电化学极化阻抗小,放电比容量为126.8 mAh.g-1,常温下50次循环后仍保持有94.1%的放电效率,高温30次后为82.5%。  相似文献   

11.
非均匀成核法表面包覆氧化铝的尖晶石LiMn2O4研究   总被引:13,自引:0,他引:13  
采用高温固相法合成尖晶石LiMn2O4,以非均匀成核方式对其进行包覆氧化铝的表面处理.通过XRD、SEM、粒度分析等技术对表面处理前后的LiMn2O4进行表征,分析了表面处理前后LiMn2O4物理特性的变化,并结合电化学性能测试,研究了表面处理工艺对LiMn2O4电化学容量与循环性能的影响.未经表面处理的LiMn2O4在1 C倍率下初期放电容量为86.5 mA•h•g-1,50次循环充放电后容量衰减26.3%.表面包覆0.5%、1%(w)氧化铝的LiMn2O4在1 C倍率下的初期放电容量分别为96.0、80.1 mA•h•g-1,经过50次循环后,容量分别降低7.0%、5.6%.实验结果表明,表面处理后的LiMn2O4循环性能显著提高,而且随着氧化物含量的增加,循环性能增强,但放电容量降低.  相似文献   

12.
尖晶石LiMn_2O_4的多元掺杂改性研究   总被引:10,自引:1,他引:10  
唐致远  冯季军  徐国祥 《化学学报》2003,61(8):1316-1318
采用高温固相法合成了多元复合掺杂改性的尖晶石型锰酸锆正极材料,用X射 线衍射法对材料进行了表征,表明所得材料均呈现良好的尖晶石的结构,通过充放 电测试,发现其中LiMn_(1.93)Co_(0.02)Cr_(0.02)Al_(0.02)La_(0.01)O_4和 LiMn_(1.93)Co_(0.02)Cr_(0.02)Al_(0.02)-Zr_(0.01)O_4的循环性能有了很大程 度的改善,循环50次后仍能保持94%和91%的容量。  相似文献   

13.
铬离子掺杂对LiFePO4电化学性能的影响   总被引:21,自引:0,他引:21  
采用机械球磨和共沉淀的方法合成了两种Cr3+掺杂的LiFePO4. 通过对合成样品的XRD、SEM及其电化学性能(循环性能、大电流放电性能)的研究表明,少量Cr3+的掺杂未影响到LiFePO4的晶体结构,但显著改善了它的电化学性能,在低放电倍率(0.1 C)时,机械球磨掺杂和共沉淀掺杂Cr3+的LiFePO4的放电容量分别为144和158 mAh•g-1,而当放电倍率提高到2 C时,两种掺杂的LiFePO4仍分别具有110和130 mAh•g-1的放电容量,且循环性能良好.同时表明通过铁源共沉淀掺杂是一条改善离子掺杂效果的有效途径.  相似文献   

14.
阮艳莉  唐致远 《化学学报》2008,66(6):680-684
尝试对共沉淀法进行改进, 利用自制的加料装置合成了橄榄石型LiFePO4/C复合正极材料. 应用X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱(EDS)、循环伏安(CV)以及恒电流充放电测试等方法对目标材料进行了结构表征和电化学性能测试. 实验结果表明采用该法得到的样品具有单一的橄榄石结构, 样品形貌规则, 粒径细小均匀. 改性后的材料具有较高的首放容量及良好的循环稳定性能. 0.1C倍率下充放电测试表明, 其首次放电比容量超过145 mAh•g-1, 50次循环后, 容量没有明显衰减. 0.2C和0.5C倍率下的平均放电容量分别为130及120 mAh•g-1, 循环过程中样品表现出较好的循环稳定性.  相似文献   

15.
正尖晶石LiMn_2O_4电化学性能研究   总被引:6,自引:1,他引:5  
采用高温固相反应合成了尖晶石LiMn2 O4 锂离子电池正极材料 ,并对其性能进行研究 .综合考察了影响材料电化学性能的主要因素 ,诸如原材料的选择、合成温度、Li/Mn比以及添加金属元素Co等 .研究了材料在高温下的电化学性能和影响因素 ,并分析了LiMn2 O4 在电解质中的溶解和引起容量衰减的原因  相似文献   

16.
何轶  李敏  李荣华 《化学研究》2010,21(1):36-40
采用高温固相反应合成了一系列的LiMn2-2xSmxSrxO4正极材料(0≤x≤0.1);采用X射线衍射仪分析了合成产物的晶体结构;利用充放电试验测定了产物的电化学性能,利用电化学阻抗谱分析了产物的电化学循环机理.结果表明,所合成的LiMn2-2xSmxSrxO4(x=0,0.01,0.02,0.03,0.04,0.05)样品均保持尖晶石相,属于Fd3m空间群.LiMn1.9Sm0.05Sr0.05O4的电化学性能最佳,首次放电容量为96.8 mAh/g,在3.0~4.4 V区间内50次循环后容量保持率超过96%.与此同时,LiMn2O4和LiMn1.90Sm0.05Sr0.05O4的电极阻抗变化不同,进而影响其电化学性能.  相似文献   

17.
薛明喆  傅正文 《化学学报》2007,65(23):2715-2719
采用脉冲激光溅射Fe和Se粉末的混合靶制备FeSe薄膜并用XRD、充放电和循环伏安测试研究了薄膜的结构和电化学性质. XRD结果显示, 当基片温度为200 ℃时, 薄膜主要由晶态的FeSe组成. 在电压1.0~3.0 V范围内, 该薄膜的可逆容量为360.8 mAh•g-1, 经过100次循环之后的放电容量为396.5 mAh•g-1, 具有很好的循环性能. ex situ XRD结果显示FeSe能够和Li发生可逆的电化学反应, 颗粒尺寸大于5 nm的纳米铁颗粒能够驱动Li2Se的分解并在充电过程中重新生成FeSe. FeSe具有较高的可逆容量和较好的循环性能, 可能成为一种优良的锂二次电池正极材料.  相似文献   

18.
锂电池用正极材料多硫代苯的电化学性能   总被引:3,自引:0,他引:3  
采用多硫化钠与六氯代苯为原料,制备了一系列具有网状交联结构的不同硫含量的多硫代苯作为锂电池正极材料,并对其电化学性能进行了研究.结果表明,提高硫含量有利于提高材料的放电容量,但易加剧充放电循环中的容量衰减.硫含量为91.99%的样品,首放容量达到756 mAh·g-1,20次循环容量保持367 mAh·g-1.讨论了多硫代苯的放电机理,循环容量衰减和充放电效率较低的原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号