首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The effect of recirculation on the operating conditions of a chemical reactor, a model of which was proposed earlier in [1], is discussed. The feasibility and efficiency of carrying out many chemical processes in systems with recirculation was demonstrated in [2]. An investigation has also been made of the stability of operating conditions for one simple model of a reactor with a recycle [3]. In [1], a mathematical model was proposed for an ideal-displacement chemical reactor, taking integral account of heat evolution, in which diffusional transfer is negligibly small in comparison with convective transfer, and the thermal conductivity is so great that the temperature inside the reactor can be assumed to be identical. An investigation was made of the question of steady-state conditions and their stability. Below, this question is discussed for the case where, in such a reactor, part of the stream passing through the reactor is again fed to its inlet. As in [1, 4], account is taken of the dependence of the viscosity of the mixture of reagents and the reaction products on the temperature.  相似文献   

2.
We study the stability of wave flow of a viscous incompressible fluid layer subjected to tangential stress and an inclined gravity force with respect to long-wave disturbances.An asymptotic solution is constructed for the equations of the disturbed motion and the problem is reduced to the study of a second-order ordinary differential equation. It is shown that after loss of stability by a Poiseuille flow the laminar nature of the flow is not destroyed, but the form of the free surface acquires a wave-like profile. The Poiseuille regime is stable for low Reynolds numbers. The critical Reynolds number for wave flow is found, and the stability and instability regions are determined.  相似文献   

3.
The motion of a thin vortex with infinitesimally small vorticity in the velocity field created by a steady straight vortex is studied. The motion is governed by non-integrable PDE generalizing the Nonlinear Schrodinger equation (NLSE). Situation is essentially different in a co-rotating case, which is analog of the defocusing NLSE and a counter-rotating case, which can be compared with the focusing NLSE. The governing equation has special solutions shaped as rotating helixes. In the counter-rotating case all helixes are unstable, while in the co-rotating case they could be both stable and unstable. Growth of instability of counter-rotating helix ends up with formation of singularity and merging of vortices. The process of merging goes in a self-similar regime. The basic equation has a rich family of solitonic solutions. Analytic calculations are supported by numerical experiment.  相似文献   

4.
Flow reactors are widely used in the chemical industry for purposes of catalytic reactions [1,2]. Calculation of reactors of this type, even in one-dimemional approximation, is complicated and possible only with the use of numerical methods [1, 3]. Such calculations make it possible to find the steady-state distribution of temperature and concentration in the chemical reactor if one exists; in general, however, there may be other steady-state regimes which may be preferable from the standpoint of obtaining a different degree of conversion of the starting product, operating stability, etc.In this connection special interest attaches to the question of the existence and number of steady-state solutions of the system of equations describing the reactor process.This problem was previously considered in [4–7]. Thus, in [4, 5] it was pointed out that in certain special cases more than one steady-state regime may exist. In [6, 7] the question of sufficient conditions of uniqueness was investigated. In [7] it was shown that the steady-state regime is unique in the ease of short reactors or a dilute mixture of reactants. In [8] the problem of the existence and uniqueness of the steady-state regime was examined for a chain reaction model with direct application of the general theorems of functional analysis.The present paper includes an analysis of a very simple mathematical model of an adiabatic chemical reactor in which an exothermic or endothermie reaction takes place. It is established that in the case of an endothermic process a unique steady-state regime always exists. In the exothermic case the problem of the steady-state regime also always has a solution which, however, may be nonunique; the possibility of the existence of several steady-state regimes, associated with the form of the temperature dependence of the heat release rate, is substantiated.The authors thank G. I. Barenblatt, A. I. Leonov, L. M. Pis'men, and Yu. I. Kharkats for discussing and commenting on the work.  相似文献   

5.
A new numerical model has been developed to simulate the transport of dye in primary sedimentation tanks operating under neutral density conditions. A multidimensional algorithm based on a new skew third-order upwinding scheme (STOUS) is used to eliminate numerical diffusion. This algorithm introduces cross-difference terms to overcome the instability problems of the componentwise one-dimensional formulae for simulating multi-dimensional flows. Small physically unrealistic overshooting and undershooting have been avoided by using a well-established technique known as the universal limiter. A well-known rotating velocity field test was used to show the capability of STOUS in eliminating numerical diffusion. The STOUS results are compared with another third-order upwinding technique known as UTOPIA. The velocity field is obtained by solving the equations of motion in the vorticity–streamfunction formulation. A k– ϵ model is used to simulate the turbulence phenomena. The velocity field compares favourably with previous measurements and with UTOPIA results. An additional differential equation governing the unsteady transport of dye in a steady flow field is solved to calculate the dye concentration and to produce flow-through curves (FTCs) which are used in evaluating the hydraulic efficiency of settling tanks. The resulting FTC was compared with both measurements and numerical results predicted by various discretization schemes. © 1997 by John Wiley & Sons, Ltd.  相似文献   

6.
The objective of this contribution is to investigate whether the mechanism of the thermal diffusion instability in gaseous flames causing cellular flame structures also occurs during the combustion of porous solid fuel. Based on conservation for mass and energy, the relevant set of differential equations was derived. Assuming thermal equilibrium between fuel and oxidiser, a global energy equation was valid for both solid and gaseous phase. The resulting set of differential equations was discretised by the Collocation method to arrive at a system of algebraic equations. In order to investigate into cellular flame structures, an infinitesimal disturbance was superimposed onto the plane conversion front. Carrying out a linear instability analysis, yielded eigenvalues dependent on the wave number of the disturbance. A critical wave number exists below which the real part of the eigenvalues is positive, thus, indicating a regime of instability. Within this region, eigenvalues with a not-vanishing imaginary part of the eigen value existed causing cellular flame structures. However, the growth rate of disturbances was found to be small, which may explain the difficulty to investigate this phenomena experimentally.  相似文献   

7.
The propagation of acoustic waves in two-fraction liquid mixtures containing vapor-gas bubbles of different dimensions and composition with phase transitions in each fraction is investigated. The system of differential equations of the mixture motion is presented and the dispersion equation is derived. The evolution of weak pulsed pressure disturbances in the mixture is numerically investigated. The effect of phase transitions in each fraction of the disperse phase on the evolution of a small-amplitude pressure pulse is shown.  相似文献   

8.
In a plane horizontal fluid layer bounded by permeable plane surfaces which are heated to different temperatures and between which transverse flow takes place with uniform velocity, convection occurs at a definite critical Rayieigh number. The study of the disturbance spectrum and the convective stability, made within the framework of linear theory in [1], showed that convective instability in the layer with permeable boundaries, just as in the case of the Rayieigh problem, is associated with the development of monotonie disturbances. It turns out that the transverse motion in the layer leads to a considerable increase of the Rayieigh number. Linear theory does not permit analysis of the development of the disturbances in the supercritical region. Analysis of the developed nonlinear motion can be made only on the basis of the complete nonlinear convection equations.In this investigation we made a numerical study of nonlinear motions in the supercritical region. Calculations were made on a computer via the grid method. Solutions are obtained for the nonlinear equations of motion over a wide range of Rayieigh numbers for different values of the Peclet number, whichdefines the intensity of the transverse motion in the layer.The author wishes to thank E. M. Zhukovitskii for his guidance, and G. Z. Gershuni and E. L. Tarunin for their interest and assistance in the study.  相似文献   

9.
Some conclusions about the smooth function classes stability for the basic system of equations of atmospheric motion and instability for Navier-Stokes equation are summarized. On the basis of this, by taking the basic system of equations of atmospheric motion via Boussinesq approximation as example to explain in detail that the instability about some simplified models of the basic system of equations for atmospheric motion is caused by the instability of Navier-Stokes equation, thereby, a principle to guarantee the stability of simplified equation is drawn in simplifying the basic system of equations.  相似文献   

10.
One of the fundamental problems in the theory of chemical reactors is the determination of the number of steady regimes and their stability. The problem of the number of steady regimes has been considered in many studies, for example, in [1–4]. The stability of a steady regime is usually established from an analysis of the behavior of small perturbations. The corresponding linear boundary-value problem for perturbations has been studied mainly in the limiting cases of ideal mixing and ideal displacement. When account was taken of longitudinal mixing, the only criteria obtained were ones which imposed fairly severe restrictions on the parameters [5]. In the present study numerical analysis is used in order to investigate the stability of steady concentration distributions in an isothermal chemical flow reactor with longitudinal mixing in the case of a single chemical reaction. The eigenvalues were obtained for the Sturm-Liouville problem, which fully characterize the stability for several laws of variation of the chemical reaction rate as a function of the concentration. A knowledge of the eigenvalues is essential, for example, in order to construct the stabilization system proposed in [6] for the unsteady regime.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 179–182, March–April, 1985.  相似文献   

11.
In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat conducting and non-viscous mixture described by an Eulerian set of evolution equations. The model is derived from the kinetic theory in a hydrodynamic regime of a fast chemical reaction. The reactive source terms are explicitly computed from the kinetic theory and are built in the model in a proper way. For both time-dependent problems, we first derive the appropriate dispersion relation, which retains the main effects of the chemical process, and then investigate the influence of the chemical reaction on the properties of interest in the problems studied here. We complete our study by developing a rather detailed analysis using the Hydrogen–Chlorine system as reference. Several numerical computations are included illustrating the behavior of the phase velocity and attenuation coefficient in a low-frequency regime and describing the spectrum of the eigenmodes in the small wavenumber limit.  相似文献   

12.
In this paper we present a theoretical and numerical study of the growth of linear disturbances in the high Reynolds number laminar compressible wake behind a flat plate which is aligned with a uniform stream. No ad hoc assumptions are made as to the nature of the undisturbed flow (in contrast to previous investigations) but instead the theory is developed rationally by use of proper wake profiles which satisfy the steady equations of motion. The initial growth of near-wake perturbations is governed by the compressible Rayleigh equation which is studied analytically for long and short waves. These solutions emphasize the asymptotic structures involved and provide a rational basis for a nonlinear development. The phenomenon of enhanced stability with increasing Mach number observed in compressible free shear-layers is demonstrated analytically for short- and long-wavelength disturbances. The evolution of arbitrary wavelength perturbations is addressed numerically and spatial stability solutions are presented that account for the relative importance of the different physical mechanisms present, such as three-dimensionality, increasing Mach numbers, and the nonparallel nature of the mean flow. Our findings indicate that for low enough (subsonic) Mach numbers, there exists a region of absolute instability very close to the trailing edge with the majority of the wake being convectively unstable. At higher Mach numbers (but still not large—hypersonic) the absolute instability region seems to disappear and the maximum available growth rates decrease considerably. Three-dimensional perturbations provide the highest spatial growth rates.This work was carried out while the author was a summer visitor at the Institute for Computer Applications in Science and Engineering, NASA Langley Research Center under NASA Contract No. NAS1-18605.  相似文献   

13.
Linear and nonlinear initial-value problems are discussed for planar inviscid disturbances in streamlined near-wakes. This is mostly for those areas of near-wake flow where the basic motion comprises nearly uniform shear with or without normal influx into the accompanying viscous interfacial layer, although agreement is found with linear properties for full velocity profiles of double-Blasius, double-Jobe–Burggraf, Hakkinen–Rott and Goldstein form. With nonlinear disturbances, wavelike initial conditions yield a known critical-layer development, whereas more general, non-wave, initial conditions lead to a new integro-partial-differential amplitude equation which is studied analytically and numerically. The solutions show decay, finite-time blowup or nonlinear upstream-travelling disturbances. The normal influx proves crucial. Absolute and upstream- or downstream-convective instability is encountered (depending on the profiles, and flow reversal, for example); and in generic cases (for any thin airfoil) nonlinearity is shown analytically to provoke upstream convection. Increased nonlinearity drives the typical transition point extremely close to the trailing edge. Comparisons are made with three-dimensional behaviour in the linear case and with a direct simulation in the nonlinear regime.  相似文献   

14.
 Recently, in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the pom-pom equations have been derived in the integral/differential form and also in the simplified differential type by McLeish and Larson on the basis of the reptation dynamics with simplified branch structure taken into account. In this study, mathematical stability analysis under short and high frequency wave disturbances has been performed for these constitutive equations. It is proved that the differential model is globally Hadamard stable, as long as the orientation tensor remains positive definite or the smooth strain history in the flow is previously given. However both versions of the model are Hadamard unstable if we neglect the arm withdrawal in the case of maximum backbone stretch. It is also dissipatively unstable, since the steady shear flow curves exhibit non-monotonic dependence on shear rate. Additionally, in the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equations exhibit severe instability that the solution possesses strong discontinuity at the moment of change of chain dynamics mechanisms. Received: 14 August 2001 Accepted: 18 October 2001  相似文献   

15.
We consider the time-dependent shear flow of an Oldroyd-B fluid with slip along the fixed wall. Slip is allowed by means of a generic slip equation predicting that the shear stress is a non-monotonic function of the velocity at the wall. The complete one-dimensional stability analysis to one-dimensional disturbances is carried out and the corresponding neutral stability diagrams are constructed. Asymptotic results for large values of the elasticity number and finite element calculations are also presented. The instability regimes are within or coincide with the negative-slope regime of the slip equation. The numerical calculations agree with the linear stability results when the size of the initial perturbation is small. Large perturbations may destabilize a linearly stable steady state, leading to a periodic solution. The period and the amplitude of the periodic solutions increase with elasticity. Received: 19 June 1997 Accepted: 22 September 1997  相似文献   

16.
Summary Nonlinear dynamics of one-mode approximation of an axially moving continuum such as a moving magnetic tape is studied. The system is modeled as a beam moving with varying speed, and the transverse vibration of the beam is considered. The cubic stiffness term, arising out of finite stretching of the neutral axis during vibration, is included in the analysis while deriving the equations of motion by Hamilton's principle. One-mode approximation of the governing equation is obtained by the Galerkin's method, as the objective in this work is to examine the low-dimensional chaotic response. The velocity of the beam is assumed to have sinusoidal fluctuations superposed on a mean value. This approximation leads to a parametrically excited Duffing's oscillator. It exhibits a symmetric pitchfork bifurcation as the axial velocity of the beam is varied beyond a critical value. In the supercritical regime, the system is described by a parametrically excited double-well potential oscillator. It is shown by numerical simulation that the oscillator has both period-doubling and intermittent routes to chaos. Melnikov's criterion is employed to find out the parameter regime in which chaos occurs. Further, it is shown that in the linear case, when the operating speed is supercritical, the oscillator considered is isomorphic to the case of an inverted pendulum with an oscillating support. It is also shown that supercritical motion can be stabilised by imposing a suitable velocity variation. Received 13 February 1997; accepted for publication 29 July 1997  相似文献   

17.
The nonlinear dynamics of a base-excited slender beam carrying a lumped mass subjected to simultaneous combination parametric resonance of sum and difference type along with 1:3:5 internal resonances is investigated. Method of normal form is applied to the governing nonlinear temporal differential equation of motion to obtain a set of first-order differential equations which are used to obtain the steady-state, periodic, quasi-periodic and chaotic responses for different control parameters viz., amplitude and frequency of external excitation and damping. Frequency response, phase portraits, time spectra and bifurcation diagram are plotted to visualize the system behaviour with variation in the control parameters. Here, two distinct zones of trivial instability, blue sky catastrophe phenomena, jump down phenomena, simultaneous occurrence of periodic and chaotic orbits, period doubling of the mixed-mode periodic orbits leading to chaos, attractor merging crisis, boundary crisis, type II and on-off intermittencies are observed. Bifurcation diagram is plotted to facilitate the designer to choose a safe operating zone.  相似文献   

18.
The problem of rigid-body motion in an unsteady gas flow is considered using a flow model [1] in which the motion of the body is described by a system of integrodifferential equations. The case in which among the characteristic exponents of the fundamental system of solutions of the linearized equations there are not only negative but also one zero exponent is analyzed. The instability conditions established with respect to the second-order terms on the right sides of the equations are noted. The problem may be regarded as a generalization of the problem of the lateral instability of an airplane in the critical case solved by Chetaev [2], pp. 407–408.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 18–22, May–June, 1989.  相似文献   

19.
A study is made of a vertical plane layer of reacting fluid whose boundaries are maintained at constant equal temperatures. As a result of heating due to a chemical reaction of zeroth order taking place in the fluid a steady plane-parallel convective flow develops in the layer, and if the internal heat release is sufficiently intense this can become unstable. The linear stability of this motion has hitherto been considered only in the hydro-dynamic formulation [1], in which one can ignore the thermal perturbations and their influence on the development of the hydrodynamic perturbations (the region of small Prandtl numbers). In the present paper, the stability boundary is determined for arbitrary values of the Prandtl number and the Frank-Kamenetskii parameter FK characterizing the steady plane-parallel regime. An important difference between this flow and the types of convective motion hitherto studied [2] is that the basic planeparallel flow of the reacting medium is possible only in a definite range of the parameter FK: At values of the parameter exceeding a critical value, there is a thermal explosion — abrupt strong heating of the fluid. This is due to the essentially nonlinear dependence of the heat release of a chemical reaction on the temperature.  相似文献   

20.
A motion of a vortex ring in a stratified fluid is accompanied by associated disturbances which, in the schlieren visualization in the field of a horizontal density gradient, have the shape of a symmetric four-petal configuration. The criterion of the existence of the disturbances is the Froude number Fr based on the motion velocity and the vertical vortex size. On the range Fr > 1, the disturbances are stable with respect to the variation of themotion regime and the distortion of the vortex shape. For Fr < 1 the disturbances disappear. Computer processing of the schlieren photographs showed that the experimental spatial dependences of the disturbance amplitude are close to the functions describing the distribution of the vertical velocity component in the inviscid flow past a sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号