首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen absorption–desorption processes for square planar Mn(II), Co(II) and Mn(II) complexes of tetradentate Schiff base ligands in DMF and chloroform solvents were investigated. The tetradentate Schiff base ligands were obtained by condensation reaction of ethylenediamine with salcyldehyde, o-hydroxyacetophenone or acetylacetone in the molar ratio 1:2. The square planar complexes were prepared by the reaction of the Schiff base ligands with Mn(II) acetate, Co(II) nitrate and Ni(II) nitrate in dry ethanol under nitrogen atmosphere. The sorption processes were undertaken in the presence and absence of (pyridine) axial-base in 1:1 M ratio of (pyridine:metal(II) complexes). Complexes in DMF indicate significant oxygen affinity than in chloroform solvent. Cobalt(II) complexes showed significant sorption processes compared to Mn(II) and Ni(II) complexes. The presence of pyridine axial base clearly increases oxygen affinity.  相似文献   

2.
Two new Schiff base ligands (L1, L2) have been prepared from the reaction of 2,6-diacetylpyridine and 2-pyridinecarboxyaldehyde with 4-amino-2,3-dimethyl-1-phenyl-3-pyrozolin-5-on, and their Co(II), Cu(II), Ni(II), Mn(II), and Cr(III) metal complexes have also been prepared. The complexes are formed by coordination of N and O atoms of the ligands. Their structures were characterized by physico-chemical and spectroscopic methods. The analytical data shows that the metal to ligand ratio in the Schiff base complexes is 1:2. The Schiff base ligands and all complexes were evaluated for their in vitro antibacterial and antifungal activities by the disc diffusion method. In addition, the genotoxic properties of the ligands were studied.  相似文献   

3.
The condensation of 4-amino-1,2,4-triazole with N-substituted-3-formyl-4-hydroxyquinolin-2-(1H)-one derivatives has lead to the synthesis of a new series of quinolin-2(1H)-one-triazole derived Schiff base ligands (13). Cu(II) and Zn(II) complexes (1a3a and 1b3b, respectively) of these ligands were also prepared. The complexes were characterised by standard techniques and for two of the complexes X-ray crystallography confirmed that the geometry at the metal centre was octahedral in both cases and that the Schiff base acted as a bidentate ligand coordinating to the metal(II) ion through the deprotonated oxygen and azomethine nitrogen atoms. All of the compounds were investigated for their antimicrobial activities against a fungal strain, Candida albicans, and against Gram-positive and Gram-negative bacteria. The compounds were found to be active against C. albicans but inactive against Staphylococcusaureus and Escherichia coli.  相似文献   

4.
In this study, two novel Schiff base ligands (L1 and L2) derived from condensation of methyl 2-amino-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate and methyl 2-amino-6-phenyl-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate, both starting matter with 5-bromo-salicylaldehyde, and their Zn(II) and Ni(II) metal complexes have been prepared using a molar ratio of ligand:metal as 1:1 except the Ru(II) complexes 1:0.5. The structures of the obtained ligands and their metal complexes were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR, UV–vis, thermal analysis methods, mass spectrometry, and magnetic susceptibility measurements. Antioxidant and antiradical activity of Schiff base ligands and their metal complexes were been evaluated in vitro tests. Antioxidant activities of metal complexes generally were more effectives than free Schiff bases. 1c and 2c were used as catalysts for the transfer hydrogenation (TH) of ketones. 1c, 2c complexes were found to be efficient catalyst for transfer hydrogenation reactions.  相似文献   

5.
The bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) serves as precursor for the formation of different Schiff base ligands, which are either di- or tetra-basic with two symmetrical sets of either O2N or N2O tridentate chelating sites. The condensation of 4,6-diacetylresorcinol with 3-amino-1-propanol (3-AP) or 1,3-diaminopropane (DAP), yields the corresponding hexadentate Schiff base ligands, abbreviated as H4La and H2Lb, respectively. The structures of these ligands were elucidated by elemental analyses, IR, mass, 1H NMR and electronic spectra. Reaction of the Schiff base ligands with copper(II), nickel(II), cobalt(II), zinc(II), cadmium(II), iron(III), chromium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded the corresponding transition metal complexes. A variety of binuclear complexes for the metal complexes were obtained with the ligands in its di- or tetra-deprotonated forms. The structures of the newly prepared complexes were identified by elemental analyses, infrared, electronic, mass, 1H NMR and ESR spectra as well as magnetic susceptibility measurements and thermal gravimetric analysis (TGA). The bonding sites are the azomethine and amino nitrogen atoms, and phenolic and alcoholic oxygen atoms. The metal complexes exhibit different geometrical arrangements such as square planar, tetrahedral, square pyramid and octahedral arrangement.  相似文献   

6.
Five new Ni(II) Schiff base complexes [NiLx(Solv)2] denoted by NiLx, x = 1–5, were synthesized and characterized. The Schiff base ligands were synthesized from the condensation of 5-bromo-2-hydroxy-3-nitrobenzaldehyde with different aliphatic and aromatic diamines. The X-ray crystal structure of NiL3 was determined. The ligands and complexes were tested as antibacterial agents against two gram(+) and two gram(?) human pathogenic bacteria. The complexes showed moderate antibacterial activity against both gram type bacteria. The new Ni(II) complexes showed enhanced antibacterial activity compared to the previously reported Cu(II) complexes of the same ligands.  相似文献   

7.
Azo compounds were prepared by coupling of benzenediazonium chloride ions with 1-amino-2-hydroxy-4-naphthalene sulfonic acid under alkaline conditions, and Schiff bases, L1–3 were then obtained by the condensation of 1-amino-2-hydroxy-3-(phenylazo)-4-naphthalene sulfonic acid, 1-amino-2-hydroxy-3-(4-ethylphenylazo)-4-naphthalene sulfonic acid, and 1-amino-2-hydroxy-3-(4-nitrophenylazo)-4-naphthalene sulfonic acid with salicylaldehyde. New copper(II), nickel(II), and zinc(II) complexes of the Schiff base ligands were also prepared and characterized by spectroscopic methods, magnetic measurements, elemental, and thermogravimetric analysis.  相似文献   

8.
Novel Schiff base ligand based on the condensation of 4,6-diacetyl resorcinol with 2-amino-4-methylthiazole in addition to its metal complexes with Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) ions have been synthesized. The structure, electronic properties, and thermal behaviour of Schiff base and its metal complexes have been studied by elemental analysis, mass, 1H NMR, IR spectra, thermal analysis, and theoretically by density function theory. The ligand acted as mononegative bidentate (NO) ligand and all complexes showed octahedral geometry except Cu (II) showed tetrahedral geometry as indicated from the spectral and magnetic studies. The Cu (II), Zn (II) and Cd (II) complexes were non electrolytes while the rest of the complexes were electrolytes. The antibacterial plus anticancer activities of the parent Schiff base and its metal complexes were screened. In addition, the molecular docking study was performed to explore the possible ways for binding to Crystal Structure of Human Astrovirus capsid protein (5ibv) receptor.  相似文献   

9.
Z. Cimerman  Z. Štefanac 《Polyhedron》1985,4(10):1755-1760
The crystalline product obtained by the condensation of 2-amino-3-aminomethyl-4-methoxymethyl-6-methylpyridine and salicylaldehyde was characterized by spectrometric methods (UV, IR, 1H NMR and MS). It was shown that the dissolution of the crystalline cyclic diamine afforded its tautomeric conversion to the enolimine form of the Schiff base [2-amino-4-methoxymethyl-6-methyl-3(salicylideneaminomethyl) pyridine] with a rate of the process and a ratio of both forms attained at equilibrium dependent upon the solvent. The presence of the ketoamine form was not evidenced. The behaviour of the condensation product as the ligand in formation of complexes with Cu(II), Ni(II), Co(II) and Cd(II) was investigated in methanolic solution. Coordination with Cu(II) and Ni(II) caused partial hydrolysis of the ligand and the formation of complexes of the bis Schiff base [4-methoxymethyl-6-methyl-2-(salicylideneamino)-3-(salicylideneaminomethyl)pyridine] characterized after their isolation by elemental analyses and spectrometric data.  相似文献   

10.
Two tridentate Schiff base ligands were synthesized by condensation of equimolar amounts of benzoylacetone and 2-amino-1-ethanol or 3-amino-1-propanol, H2L1 and H2L2, respectively. The reaction of the Schiff base ligands with Cu(CH3COO)2 in methanol leads to (CuL1)4, 1 and (CuL2)2, 2. In the tetranuclear cubane species, the tridentate H2L has both a chelating and a bridging mode, after double deprotonation of the enolic OH groups. The copper(II) centers are five-coordinate with a NO4 donor set from the ligands. The coordination geometry around each copper ion is essentially square pyramidal with one nitrogen and two oxygens from one ligand and two oxygens of adjacent ligands from the next unit of the cubane. In dinuclear 2, H2L2 has chelating and bridging modes after double deprotonation of the enolic OH groups. The dianionic form of the Schiff base coordinates forming a six-membered chelate ring with Cu(II). Two such monomeric CuL2 entities are eventually linked through the alkoxo bridges to produce dinuclear 2. The absorption spectra strongly suggest that 2 interacts with CT-DNA. Both 1 and 2 appear to be more efficient than the parent compound in DNA cleavage.  相似文献   

11.
The paper presents the synthesis of complex combinations of Cu(II) and Zn(II) with Schiff base obtained by the condensation reaction of 4-aminoantipyrine with benzaldehyde and 2-amino-3-methyl-butanoicacid. Structural features of synthesized compounds were determined by analytical and spectral techniques. Binding of synthesized complexes with calf thymus DNA (CT DNA) was studied by spectroscopic methods and viscosity measurements. Experimental results indicated the ability of the complexes to form adducts with DNA and to distort the double helix by changing the base stacking. Oxidative DNA cleavage activities of the complexes were studied with supercoiled (SC) pUC19 DNA using gel electrophoresis. The in vitro antimicrobial screening effects of the investigated compounds were monitored by the disk diffusion method. The synthesized Schiff base complexes exhibited higher antimicrobial activity than the respective free Schiff base. The in vitro cytotoxicity of synthesized complexes against Ehrlich ascites carcinoma (EAC) tumor model was investigated using trypan blue dye exclusion assay. The complexes possessed significant cytotoxic activity.  相似文献   

12.
A series of Cu(II) complexes have been synthesized from bidentate Schiff base ligands (by condensation of Knoevenagel condensate of acetoacetanilide (obtained from substituted benzaldehydes and acetoacetanilide) and 2-aminobenzothiazole). They were characterized by elemental analysis, IR, 1H NMR, 13C NMR, UV–vis., molar conductance, magnetic moment, ESR spectra and electrochemical studies. Based on the magnetic moment, ESR, and electronic spectral data, a distorted square planar geometry has been suggested for the complexes. Antibacterial and antifungal screening of the ligands and their complexes reveal that all the complexes show higher activities than the ligands. The antioxidant activities of the ligands and complexes were determined by superoxide and hydroxyl radical scavenging methods in vitro, indicating that the complexes exhibit more effective antioxidant activity than the ligands alone. The results show that the Cu(II) complexes also have similar superoxide dismutase activity to that of native Cu, Zn-SOD. All complexes exhibit suitable Cu(II)/Cu(I) redox potential (E1/2) to act as synthetic antioxidant enzyme mimics.  相似文献   

13.
Schiff base metal complexes of Cr(III), Co(II), Ni(II) and Cu(II) derived from 5-chlorosalicylidene-2-amino-5-methylthiazole (HL1) and 2-hydroxy-1-naphthylidene-2-amino-5-methylthiazole (HL2) have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, 1H-NMR, ESR, magnetic susceptibility, thermal, electrical conductivity and XRD analyses. The complexes exhibit coordination number 4 or 6. The complexes are coloured and stable in air. Analytical data reveal that all the complexes exhibit 1:2 (metal:ligand) ratio. IR data show that the ligand coordinates with the metal ions in a bidentate manner through the phenolic oxygen and azomethine nitrogen. FAB-mass and thermal data show degradation pattern of the complexes. The thermal behaviour of metal complexes shows that the hydrated complexes lose water molecules of hydration in the first step; followed by decomposition of ligand molecules in the subsequent steps. XRD patterns indicate crystalline nature for the complexes. The Schiff bases and metal complexes show good activity against the Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia coli and fungi Aspergillus niger and Candida albicans. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases.  相似文献   

14.
In order to develop new metallo-antimicrobials the complexes of type MLCl·nH2O ((1) M: Co, n = 0; (2) M: Ni, n = 2; (3) M: Cu, n = 2.5; (4) M: Zn, n = 0, HL: Schiff base derived from acetylacetone and 3-amino-4H-1,2,4-triazole) were synthesized by template condensation. The features of complexes have been assigned from microanalytical, IR and UV–Vis-NIR data. The species heating in air evidenced processes as melting, water and hydrochloride endothermic elimination as well as oxidative degradation of the Schiff base. The temperature ranges as well as modification in the electronic spectra of dehydrated intermediates indicate the presence of both coordination and crystallisation water molecules. The final product of decomposition was the most stable metal oxide as powder X-ray diffraction indicated.  相似文献   

15.
Cu(II) complexes with Schiff bases DMIIMP, DMIIMBD, DMIIMBP, DMIIMCP, DMIIMMP, and DMIIMNP (see Introduction for definitions) are derived from condensation of 3,4-dimethyl 5-amino-isoxazole with salicylaldehyde and substituted salicylaldehydes. The newly synthesized ligands were characterized by IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, and elemental analysis. The Cu(II) complexes were characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, thermogram, DTA, and single crystal analysis. The complexes have general formula [M(L)2]. The Schiff bases are bidentate coordinating through the azomethine nitrogen and phenolic oxygen of salicylaldehydes. Based on the analytical and spectral data, four-coordinate geometry is assigned for all the complexes. ESR and single crystal analysis suggests square planar geometry for all complexes. [Cu(DMIIMP)2] crystallizes in the orthorhombic system. Antimicrobial studies of Schiff bases and their metal complexes show significant activity with the metal complexes showing more activity than corresponding Schiff bases. Cytotoxicity of the copper complexes on human cervical carcinoma cells (HeLa) was measured using the Methyl Thiazole Tetrazolium assay.  相似文献   

16.
A number of oxotitanium(IV) complexes of the type TiOL with bis‐unsymmetric dibasic tetradentate Schiff base (LH2) containing ONNO donor atoms have been synthesized. Mono‐Schiff base (OPD‐HNP) was prepared by the condensation of 1:3 molar ratio of 2‐hydroxy‐1‐naphthaldehyde (HNP) with o‐phenylenediamine (OPD). Dibasic unsymmetric tetradentate diamine Schiff bases were prepared by the reaction of OPD‐HNP with 2‐hydroxyacetophenone, 2‐hydroxypropeophenone, benzoylacetone, acetylacetone and ethylacetoacetate. Further, titanylacetylacetonate was reacted with these ligands to obtain their metal complexes. On the basis of analytical and physiochemical data, the formation of complexes as TiOL was suggested having square pyramidal geometry. Quantum mechanical approach also confirmed this geometry. The assessment of the synthesized ligands and their complexes showed that some behave as good inhibitors of mycelial growth against selected phytopathogic fungi but weak inhibitors against some selected bacteria. A few of them also showed antioxidant properties.  相似文献   

17.
Ni(II), Cu(II), and Zn(II) complexes with bidentate Schiff bases derived from the condensation reaction of 5-chlorosalicylaldehyde, 5-nitrosalicylaldehyde, and 3,5 ditertiarybutyl-2-hydroxy benzaldehyde with tryptamine, have been reported. The ligands and complexes were characterized by elemental analysis, IR, 1H NMR and UV–Vis spectroscopy as well as single crystal X-ray structure analysis whenever possible. The complexes were found to have the general formula [M(L)2]. Spectral studies reveal that these Schiff bases were acting as bidentate ligands and co-ordinating to the metal center through deprotonated phenolate oxygen and azomethine nitrogen atoms. The Zn(II) complexes establish a tetrahedral geometry in a 1:2 metal to ligand stoichiometry, whereas a square planar geometry was proposed for the nickel and copper complexes, slightly distorted in the case of the latter.The antiulcer activity of 5-chlorosalicylaldehyde derivative and its nickel and copper complexes were evaluated in ethanol-induced gastric mucosal injury in rats. This Schiff base and its complexes promote ulcer protection as ascertained by the comparative decrease in ulcer areas, and inhibition of edema and leucocyte infiltration of the submucosal layer.  相似文献   

18.
合成了3个具有不对称结构的Schiff碱配体H2Ln(n=1、2、3)。H2L1由乙酰丙酮、乙二胺和水杨醛缩合作用得到,H2L2由乙酰丙酮、(1R,2R)-环己二胺和水杨醛缩合作用得到,H2L3由苯甲酰丙酮、乙二胺和水杨醛缩合作用得到,每个反应中3个反应物的物质的量之比均为1∶1∶1。配体H2Ln分别与Ni(OAc)2.4H2O进行配位反应得到3个单核Ni(Ⅱ)配合物1,2和3。分别采用1H NMR、FTIR和元素分析对化合物进行了表征,并通过X-射线单晶衍射技术测定了3个配合物的晶体结构。  相似文献   

19.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

20.
In the present study two new series of Copper(II), Nickel(II) and Cobalt(II) complexes with two newly synthesized Schiff base ligands 4,6-bis(1-(4-bromophenylimino)ethyl)benzene-1,3-diol (H2L1), 4,6-bis(1-(4-methoxyphenylimino) ethyl)benzene-1,3-diol (H2L2) and organic ligands 8-hydroxy quinoline, 1,10-phenanthroline have been prepared. The Schiff bases H2L1 and H2L2 ligands were synthesized by the condensation of 4,6-diacetyl resorcinol with 4-bromo aniline and 4-methoxy aniline. The ligands and their metal complexes have been characterized by FT-IR, Mass, 1H NMR, UV–Vis., elemental analysis, ESR and Thermal gravimetric analysis. The Schiff base and their metal complexes were tested for antimicrobial activity against gram positive bacteria Staphylococcus aureus, Streptococcus pyogenes and gram negative bacteria Escherichia coli, Pseudomonas aeruginosa and fungus Candida albicans, Aspergillus niger and Aspergillus clavatus using Broth Dilution Method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号