首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

2.
The calcium mixed phosphate Ca8P2O7(PO4)4 has been synthesized by thermal decomposition of octacalcium phosphate previously prepared by precipitation in ammoniacal phosphate solution. The enthalpy of formation at 298.15 K referenced to β-tricalcium phosphate and calcium pyrophosphate is determined. β-Tricalcium phosphate was prepared by two methods: precipitation in ammoniacal aqueous medium and high temperature solid-state reaction. Calcium pyrophosphate was prepared by high temperature solid-state reaction. All the compounds are characterized by chemical analysis, X-rays diffraction and IR spectroscopy. The enthalpy of formation +10.83 ± 0.63 kJ mol−1 is obtained by solution calorimetry at 298.15 K in nitric acid.  相似文献   

3.
Heat capacity and enthalpy increments of calcium niobates CaNb2O6 and Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (669–1421 K). Temperature dependencies of the molar heat capacity in the form C pm=200.4+0.03432T−3.450·106/T 2 J K−1 mol−1 for CaNb2O6 and C pm=257.2+0.03621T−4.435·106/T 2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S m0(CaNb2O6, 298.15 K)=167.3±0.9 J K−1 mol−1 and S m0(Ca2Nb2O7, 298.15 K)=212.4±1.2 J K−1 mol−1, were evaluated from the low temperature heat capacity measurements. Standard enthalpies of formation at 298.15 K were derived using published values of Gibbs energy of formation and presented heat capacity and entropy data: Δf H 0(CaNb2O6, 298.15 K)= −2664.52 kJ molt-1 and Δf H 0(Ca2Nb2O7, 298.15 K)= −3346.91 kJ mol−1.  相似文献   

4.
The standard partial molar entropy of the aqueous tetrabutylammonium cation, not known previously, has now been obtained, based on the molar entropy of two of its crystalline salts, the iodide and the tetraphenylborate, recently determined experimentally for this purpose. The calculation required also published molar enthalpies of solution and solubilities of these two salts as well as of the perchlorate. The choice of the anions depended mainly on the limited solubilities of the examined salts in water, facilitating the estimation of the relevant activity coefficients. The result is S(Bu4N+, aq) = (380 ± 20) J · K−1 · mol−1 at T = 298.15 K, on the mol · dm−3 scale and based on S(H+, aq) = (−22.2 ± 1.2) J · K−1 · mol−1 (yielding the ‘absolute’ value). The molar entropy of this cation in the ideal gas standard state, S(Bu4N+, g) = (798 ± 8) J · K−1 · mol−1 then yielded the molar entropy of hydration ΔhydS (Bu4N+) = (−418 ± 23) J · K−1 · mol−1.  相似文献   

5.
The thermal conductivity and heat capacity of high-purity single crystals of yttrium titanate, Y2Ti2O7, have been determined over the temperature range 2 K?T?300 K. The experimental heat capacity is in very good agreement with an analysis based on three acoustic modes per unit cell (with the Debye characteristic temperature, θD, of ca. 970 K) and an assignment of the remaining 63 optic modes, as well as a correction for CpCv. From the integrated heat capacity data, the enthalpy and entropy relative to absolute zero, are, respectively, H(T=298.15 K)−H0=34.69 kJ mol−1 and S(T=298.15 K)−S0=211.2 J K−1 mol−1. The thermal conductivity shows a peak at ca. θD/50, characteristic of a highly purified crystal in which the phonon mean free path is about 10 μm in the defect/boundary low-temperature limit. The room-temperature thermal conductivity of Y2Ti2O7 is 2.8 W m−1 K−1, close to the calculated theoretical thermal conductivity, κmin, for fully coupled phonons at high temperatures.  相似文献   

6.
Electronic parameters of constituent element core levels of strontium pyrotantalate (Sr2Ta2O7) were measured with X-ray photoelectron spectroscopy (XPS). The Sr2Ta2O7 powder sample was synthesized using standard solid state method. The valence electron transfer on the formation of the Sr–O and Ta–O bonds was characterized by the binding energy differences between the O 1s and cation core levels, Δ(O–Sr) = BE(O 1s) − BE(Sr 3d5/2) and Δ(O–Ta) = BE(O 1s) − BE(Ta 4f7/2). The chemical bonding effects were considered on the basis of our XPS results for Sr2Ta2O7 and earlier published structural and XPS data for other Sr- and Ta-containing oxide compounds. The new data point for Sr2Ta2O7 is consistent with the previously derived relationship for a set of Sr-bearing oxides. The binding energy difference Δ(O–Sr) was found to decrease with increasing bond distance L(Sr–O).  相似文献   

7.
利用精密绝热量热仪测定了0.03355mol·kg-1的硼砂水溶液在78~351K温区的热容,从实验热容测定结果得到了该水溶液的凝固点为272.905K。用最小二乘法将实验热容值对温度进行拟合,建立了该溶液的热容随温度变化的多项式方程。根据热力学函数关系式,用此多项式方程进行数值积分,获得了以298.15K为基准的该溶液在80~350K温区每隔5K的热力学函数值,并计算出摩尔熔化焓和熔化熵分别为4.536kJ·mol-1和16.22J·K-1·mol-1。根据溶液凝固点降低值,计算出了该溶液的活度为0.99763。  相似文献   

8.
The kinetics of the reaction of the CH3CHBr, CHBr2 or CDBr2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3CHBr (or CHBr2 or CDBr2) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH3CHBr2 (or CHBr3 or CDBr3). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH3CHBr + HBr) and from 288 to 477 K (CHBr2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student’s t values, units in cm3 molecule−1 s−1, no error limits for the third reaction): k(CH3CHBr + HBr) = (1.7 ± 1.2) × 10−13 exp[+ (5.1 ± 1.9) kJ mol−1/RT], k(CHBr2 + HBr) = (2.5 ± 1.2) × 10−13 exp[−(4.04 ± 1.14) kJ mol−1/RT] and k(CDBr2 + HBr) = 1.6 × 10−13 exp(−2.1 kJ mol−1/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH3CHBr and CHBr2 radicals and an experimental entropy value at 298 K for the CH3CHBr radical were obtained using a second-law method. The result for the entropy value for the CH3CHBr radical is 305 ± 9 J K−1 mol−1. The results for the enthalpy of formation values at 298 K are (in kJ mol−1): 133.4 ± 3.4 (CH3CHBr) and 199.1 ± 2.7 (CHBr2), and for α-C–H bond dissociation energies of analogous compounds are (in kJ mol−1): 415.0 ± 2.7 (CH3CH2Br) and 412.6 ± 2.7 (CH2Br2), respectively.  相似文献   

9.
Two compounds, BaNd2Fe2O7(s) and BaNdFeO4(s) in the quaternary system BaNdFeO were prepared by citrate-nitrate gel combustion route and characterized by X-ray diffraction analysis. Heat capacities of these two oxides were measured in two different temperature ranges: (i) 130-325 K and (ii) 310-845 K, using a heat flux type differential scanning calorimeter. Two different types of solid-state electrochemical cells with CaF2(s) as the solid electrolyte were employed to measure the e.m.f. as a function of temperature. The standard molar Gibbs energies of formation of these quaternary oxides were calculated as a function of temperature from the e.m.f. data. The standard molar enthalpies of formation from elements at 298.15 K, ΔfHm° (298.15 K) and the standard entropies, Sm° (298.15 K) of these oxides were calculated by the second law method. The values of ΔfHm° (298.15 K) and Sm° (298.15 K) obtained for BaNd2Fe2O7(s) are: −2756.9 kJ mol−1 and 234.0 J K−1 mol−1 whereas those for BaNdFeO4(s) are: −2061.5 kJ mol−1 and 91.6 J K−1 mol−1, respectively.  相似文献   

10.
The two alkaline earth niobates Sr2Nb2O7 and Ba0.5Sr0.5Nb2O6 have been prepared, their electronic properties measured, and their photoresponses compared. The indirect band gap in Sr2Nb2O7 is 3.86 eV compared with 3.38 eV for Ba0.5Sr0.5Nb2O6. Hence, photoanodes composed of Sr2Nb2O7 respond to much less of the “white” light spectrum than those made from Ba0.5Sr0.5Nb2O6. Nevertheless, their electrical outputs at an anode potential of 0.8 eV with respect to SCE in 0.2 M sodium acetate under “white” xenon arc irradiation of 1.25 W/cm2 are comparable.  相似文献   

11.
18O/16O isotope exchange in combination with SIMS depth profiling was used to investigate oxygen transport in Li2O-deficient single crystalline LiNbO3 in the temperature range 983 ≤ T/K ≤ 1188 at 200 mbar oxygen. Within the limit of experimental error and for the investigated range of temperatures no significant differences between transport parallel and transport perpendicular to the c-axis were found. The following temperature dependencies were determined: for oxygen tracer diffusion D = 6.4 × 10−3exp[−333 kJ/mol/(RT)] m2/s; and for oxygen surface exchange k = 7.8 × 102exp[−288 kJ mol−1/(RT)] m/s. The activation enthalpy obtained for tracer diffusion can be interpreted as the enthalpy of migration of extrinsic oxygen vacancies induced by impurities with lower valency on niobium sites.  相似文献   

12.
The standard (p = 0.1 MPa) molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids were derived from their standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of 2- and 3-cyanobenzoic acids. The standard molar enthalpies of formation of the three compounds, in the gaseous phase, at T = 298.15 K, have been derived from the corresponding standard molar enthalpies of formation in the condensed phase and standard molar enthalpies for phase transition. The results obtained are −(150.7 ± 2.0) kJ · mol−1, −(153.6 ± 1.7) kJ · mol−1 and −(157.1 ± 1.4) kJ · mol−1 for 2-cyano, 3-cyano and 4-cyanobenzoic acids, respectively. Standard molar enthalpies of formation were also estimated by employing two different methodologies: one based on the Cox scheme and the other one based on several different computational approaches. The calculated values show a good agreement with the experimental values obtained in this work.  相似文献   

13.
Chirality effects have been observed in the intercalation, spectroscopic and photoelectrochemical behavior when enantiomeric and racemic [Ru(phen)3]2+ complexes were intercalated in the interlayer spaces of K4Nb6O17. The results were interpreted in terms of a [Nb6O17]4−-chelate and chelate–chelate interactions. The faster luminescence decay and higher photocurrent of the enantiomeric [Ru(phen)3]2+–K4Nb6O17 compounds than the racemic ones suggest that the emission of adsorbed [Ru(phen)3]2+ ions was not only quenched by adsorbed complexes (or concentration quenching) but also by the semiconductive host lattices.  相似文献   

14.
The citrate-nitrate gel combustion route was used to prepare SrFe2O4(s), Sr2Fe2O5(s) and Sr3Fe2O6(s) powders and the compounds were characterized by X-ray diffraction analysis. Different solid-state electrochemical cells were used for the measurement of emf as a function of temperature from 970 to 1151 K. The standard molar Gibbs energies of formation of these ternary oxides were calculated as a function of temperature from the emf data and are represented as (SrFe2O4, s, T)/kJ mol−1 (±1.7)=−1494.8+0.3754 (T/K) (970?T/K?1151). (Sr2Fe2O5, s, T)/kJ mol−1 (±3.0)=−2119.3+0.4461 (T/K) (970?T/K?1149). (Sr3Fe2O6, s, T)/kJ mol−1 (±7.3)=−2719.8+0.4974 (T/K) (969?T/K?1150).Standard molar heat capacities of these ternary oxides were determined from 310 to 820 K using a heat flux type differential scanning calorimeter (DSC). Based on second law analysis and using the thermodynamic database FactSage software, thermodynamic functions such as ΔfH°(298.15 K), S°(298.15 K) S°(T), Cp°(T), H°(T), {H°(T)-H°(298.15 K)}, G°(T), free energy function (fef), ΔfH°(T) and ΔfG°(T) for these ternary oxides were also calculated from 298 to 1000 K.  相似文献   

15.
The diffusion of strontium and zirconium in single crystal BaTiO3 was investigated in air at temperatures between 1000 °C and 1250 °C. Thin films of SrTiO3, deposited by spin coating a precursor solution and thin films of zirconium, deposited onto the sample surfaces by sputtering, were used as diffusion sources. The diffusion profiles were measured by SIMS depth profiling on a time-of-flight secondary ion mass spectrometer (ToF-SIMS). The diffusion coefficients of strontium and zirconium were given by DSr = 3.6 × 102.0±4.4 exp[−(543 ± 117) kJ mol−1/(RT)] cm2 s−1 and DZr = 1.1 × 101.0±2.1 exp[−(489 ± 56) kJ mol−1/(RT)] cm2 s−1. The results are discussed in terms of different diffusion mechanisms in the perovskite structure of BaTiO3.  相似文献   

16.
The reaction between the magnesium β-diketonate complex Mg(tmhd)2(H2O)2 and 1 equiv. of N,N,N′,N′-tetramethylethylenediamine (tmeda = Me2NCH2CH2NMe2) in hexane at room temperature yielded Mg(tmhd)2(tmeda). The standard enthalpy of sublimation (83.2 ± 2.3 kJ mol−1) and entropy of sublimation (263 ± 6.3 J mol−1 K−1) of Mg(tmhd)2(tmeda) were obtained from the temperature dependence vapour pressure, determined by adopting a horizontal dual arm single furnace thermogravimetric analyser as a transpiration apparatus. From the observed melting point depression DTA, the standard enthalpy of fusion (58.3 ± 5.2 kJ mol−1) was evaluated, using the ideal eutectic behaviour of Mg(tmhd)2(tmeda) as a solvent with bis(2,4-pentanedionato)magnesium(II), Mg(acac)2 as a non-volatile solute.  相似文献   

17.
Thermophysical and thermochemical studies have been carried out for crystalline parabanic acid. The thermophysical study was made by differential scanning calorimetry, DSC, over the temperature interval between T = (263 and 473) K. Two phase transitions were found: at T = (392.3 ± 1.6) K with the enthalpy of transition of (2.1 ± 0.4) kJ · mol−1 and at T = (509.8 ± 1.5) K, when the compound was scanned to its fusion temperature. The standard (p = 0.1 MPa) molar enthalpy of formation, at T = 298.15 K, for crystalline parabanic acid was determined using static-bomb combustion calorimetry as −(590.2 ± 1.0) kJ · mol−1. The standard molar enthalpy of sublimation, at T = 298.15 K, was derived from the variation of their vapour pressures, measured by the Knudsen-effusion method, with the temperature. These two thermochemical parameters yielded the standard molar enthalpy of formation in the gaseous phase, at T = 298.15 K, as −(470.8 ± 1.2) kJ · mol−1.  相似文献   

18.
The mixed lead nitrate oxalate, Pb2(NO3)2(C2O4).2H2O, has been obtained in a polycrystalline form in the course of a study on precursors of nanocrystalline PZT-type oxides. Its crystal structure has been solved from powder diffraction data collected using a monochromatic radiation from a conventional X-ray source. The symmetry is monoclinic, space group P21/c (No. 14), the cell dimensions are a=10.623(2) Å, b=7.9559(9) Å, c=6.1932(5) Å, β=104.49(1)° and Z=4. The structure consists of a stacking of complex double sheets parallel to (1 0 0), forming layers held together by hydrogen bonds. The sheets result from the condensation of PbO10 polyhedra, in which the oxalate and nitrate groups, as well as water molecules, play a major role. The structure is discussed in terms of Pb---O distances, polyhedra shape and lead coordination, with emphasis on the dimensional polymerisation role of water molecules. The thermal behaviour of this layered compound is carefully described from temperature-dependent powder diffraction and thermogravimetric measurements. The enthalpy, ΔrH=232(3) kJ mol−1, and entropy, ΔrS=532(8) J K−1 mol−1, of the dehydration reaction have been determined. The high value of ΔrH demonstrates that the water molecules are strongly bonded in the structure. The complex decomposition proceeds through the crystallisation and decomposition of Pb(NO3)2(C2O4) into Pb(NO3)2 and PbC2O4, and, finally, various lead oxides.  相似文献   

19.
The structure, conductivity and water uptake of the oxygen-deficient perovskite-type compound Ba4Ca2Ta2O11 have been investigated. Ba4Ca2Ta2O11 crystallizes in the cryolite structure (cubic, Fm3m SG) with a = 8.4508(2) Å, under dry air. The compound can be partially hydrated up to a maximum water content of approximately 0.52 mol H2O per mol Ba4Ca2Ta2O11. In moist air, the structure symmetry becomes monoclinic (C2/m) and the temperature dependence of total conductivity shows a different behavior because of changes in transport mechanism. Three regions can be observed as a function of temperature. For the low temperature range 200–400 °C, the protonic conduction is prevailing with an activation energy EA = 0.85 eV. In the intermediate temperature range (400–600 °C), O2− anionic and protonic conductions are mixed with an activation energy EA = 0.45 eV and in the third region, for temperatures above 600 °C, O2−conduction is prevailing with an activation energy EA = 0.85 eV.  相似文献   

20.
Preparation of new solid solutions containing divalent europium have been tried in the systems Eu2Nb2O7Sr2Nb2O7 and Eu2Ta2O7Sr2Ta2O7. These solid solutions described as Eu2xSr2(1?x)M2O7 (M = Nb and Ta) exist in a pure orthorhombic phase in a limited region of x from 0 to about 0.5. The compounds with compositions close to Eu2M2O7 exist but techniques have not been found to prepare them in pure form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号