首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X‐ray free‐electron lasers (XFELs) generate sequences of ultra‐short spatially coherent pulses of X‐ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E? 2 × 10?6, is proposed. This is much better than for most modern X‐ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single‐crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV.  相似文献   

2.
It is important to consider radiation damage to crystals caused by data collection when solving structures and critical when determining protein function, which can often depend on very subtle structural characteristics. In this study the rate of damage to specific sites in protein crystals cooled at 100 K is found to depend on the energy of the incident X‐ray beam. Several lysozyme crystals were each subjected to 3–26 MGy of cumulative X‐ray exposure by collecting multiple data sets from each crystal at either 9 keV or 14 keV. The integrated electron density surrounding each S atom in the structure was calculated for each data set and the change in electron density was evaluated as a function of dose at the two energies. The rate of electron density decrease per cubic Å per MGy was determined to be greater at 14 keV than at 9 keV for cysteine sulfurs involved in disulphide bridges; no statistically significant differences in the decay rates were found for methionine sulfurs. These preliminary results imply that it might be possible to minimize certain types of specific radiation damage by an appropriate choice of energy. Further experiments studying a variety of photolabile sites over a wider range of energies are needed to confirm this conclusion.  相似文献   

3.
The technique of coherent X‐ray diffraction imaging (CXDI) has recently shown great promise for the study of inorganic nanocrystals. In this work the CXDI method has been applied to the study of micrometer‐size protein crystals. Finely sampled diffraction patterns of single crystals were measured and iterative phase‐retrieval algorithms were used to reconstruct the two‐dimensional shape of the crystal. The density maps have limited reproducibility because of radiation damage, but show clear evidence for crystal facets. Qualitative analysis of a number of single‐crystal diffraction peaks indicates the presence of inward surface contraction on 2 µm size crystals. A survey of several hundred diffraction patterns yielded a number of examples with dramatic single‐sided streaks, for which a plausible model is constructed.  相似文献   

4.
Inelastic X‐ray scattering instruments in operation at third‐generation synchrotron radiation facilities are based on backreflections from perfect silicon crystals. This concept reaches back to the very beginnings of high‐energy‐resolution X‐ray spectroscopy and has several advantages but also some inherent drawbacks. In this paper an alternate path is investigated using a different concept, the `M4 instrument'. It consists of a combination of two in‐line high‐resolution monochromators, focusing mirrors and collimating mirrors. Design choices and performance estimates in comparison with existing conventional inelastic X‐ray scattering instruments are presented.  相似文献   

5.
Knowing the relationship between three‐dimensional structure and properties is paramount for complete understanding of material behavior. In this work, the internal nanostructure of micrometer‐size (~10 µm) composite Ni/Al particles was analyzed using two different approaches. The first technique, synchrotron‐based X‐ray nanotomography, is a nondestructive method that can attain resolutions of tens of nanometers. The second is a destructive technique with sub‐nanometer resolution utilizing scanning electron microscopy combined with an ion beam and `slice and view' analysis, where the sample is repeatedly milled and imaged. The obtained results suggest that both techniques allow for an accurate characterization of the larger‐scale structures, while differences exist in the characterization of the smallest features. Using the Monte Carlo method, the effective resolution of the X‐ray nanotomography technique was determined to be ~48 nm, while focused‐ion‐beam sectioning with `slice and view' analysis was ~5 nm.  相似文献   

6.
The first microbeam synchrotron X‐ray fluorescence (µ‐SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X‐ray capillary half‐lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters‐sized beam to a micrometer‐sized beam. This beamline was originally designed for deep X‐ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ‐SXRF and synchrotron X‐ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X‐ray beam (for SXPD), a fixed aperture and three gate valves. Two end‐stations incorporating optics and detectors for µ‐SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ‐SXRF station utilizes a polycapillary half‐lens for X‐ray focusing. This optic focuses X‐ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end‐station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single‐element Si (PIN) solid‐state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in‐house to generate a series of single‐column data which are compatible with available XRF data‐processing software. Finally, to test the performance of the µ‐SXRF beamline, an elemental surface profile has been obtained for a piece of ancient pottery from the Ban Chiang archaeological site, a UNESCO heritage site. It was found that the newly constructed µ‐SXRF technique was able to clearly distinguish the distribution of different elements on the specimen.  相似文献   

7.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

8.
Novel X‐ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full‐field hard X‐ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub‐nanometer height sensitivity. Sub‐second X‐ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample. The optical configuration and various engineering considerations that are necessary to achieve optimal imaging resolution and contrast in this type of microscopy are discussed.  相似文献   

9.
X‐ray‐induced redox changes can lead to incorrect assignments of the functional states of metals in metalloprotein crystals. The need for on‐line monitoring of the status of metal ions (and other chromophores) during protein crystallography experiments is of growing importance with the use of intense synchrotron X‐ray beams. Significant efforts are therefore being made worldwide to combine different spectroscopies in parallel with X‐ray crystallographic data collection. Here the implementation and utilization of optical and X‐ray absorption spectroscopies on the modern macromolecular crystallography (MX) beamline 10, at the SRS, Daresbury Laboratory, is described. This beamline is equipped with a dedicated monolithic energy‐dispersive X‐ray fluorescence detector, allowing X‐ray absorption spectroscopy (XAS) measurements to be made in situ on the same crystal used to record the diffraction data. In addition, an optical microspectrophotometer has been incorporated on the beamline, thus facilitating combined MX, XAS and optical spectroscopic measurements. By uniting these techniques it is also possible to monitor the status of optically active and optically silent metal centres present in a crystal at the same time. This unique capability has been applied to observe the results of crystallographic data collection on crystals of nitrite reductase from Alcaligenes xylosoxidans, which contains both type‐1 and type‐2 Cu centres. It is found that the type‐1 Cu centre photoreduces quickly, resulting in the loss of the 595 nm peak in the optical spectrum, while the type‐2 Cu centre remains in the oxidized state over a much longer time period, for which independent confirmation is provided by XAS data as this centre has an optical spectrum which is barely detectable using microspectrophotometry. This example clearly demonstrates the importance of using two on‐line methods, spectroscopy and XAS, for identifying well defined redox states of metalloproteins during crystallographic data collection.  相似文献   

10.
Crystal centering is a key step in macromolecular X‐ray crystallography experiments. A new method using image‐processing and machine‐vision techniques allows the centering of small crystals in the X‐ray beam. This method positions crystals even when the loop is initially out of the camera's field of view and adapts to the difficulty of the experiment. The process has been tested on many diverse crystals with a 93% success rate when compared with manual centering.  相似文献   

11.
The development of a sagittally focusing double‐multilayer monochromator is reported, which produces a spatially extended wide‐bandpass X‐ray beam from an intense synchrotron bending‐magnet source at the Advanced Photon Source, for ultrafast X‐ray radiography and tomography applications. This monochromator consists of two W/B4C multilayers with a 25 Å period coated on Si single‐crystal substrates. The second multilayer is mounted on a sagittally focusing bender, which can dynamically change the bending radius of the multilayer in order to condense and focus the beam to various points along the beamline. With this new apparatus, it becomes possible to adjust the X‐ray beam size to best match the area detector size and the object size to facilitate more efficient data collection using ultrafast X‐ray radiography and tomography.  相似文献   

12.
A 3 × 6 arrayed charge‐coupled device (CCD) X‐ray detector has been developed for the continuous‐rotation method in macromolecular crystallography at the Photon Factory. The detector has an area of 235.9 mm × 235.9 mm and a readout time of 1.9 s. The detector is made of a 3 × 6 array of identical modules, each module consisting of a fiber‐optic taper (FOT), a CCD sensor and a readout circuit. The outputs from 18 CCDs are read out in parallel and are then digitized by 16‐bit analog‐to‐digital converters. The advantage of this detector over conventional FOT‐coupled CCD detectors is the unique CCD readout scheme (frame transfer) which enables successive X‐ray exposures to be recorded without interruption of the sample crystal rotation. A full data set of a lysozyme crystal was continuously collected within 360 s (180° rotation, 3 s/1.5° frame). The duty‐cycle ratio of the X‐ray exposure to the data collection time was almost 100%. The combination of this detector and synchrotron radiation is well suited to rapid and continuous data collection in macromolecular crystallography.  相似文献   

13.
A method is presented to simplify Bragg coherent X‐ray diffraction imaging studies of complex heterogeneous crystalline materials with a two‐stage screening/imaging process that utilizes polychromatic and monochromatic coherent X‐rays and is compatible with in situ sample environments. Coherent white‐beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three‐dimensional reciprocal‐space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.  相似文献   

14.
The design and performance characterization of a new light‐weight and compact X‐ray scintillation detector is presented. The detectors are intended for use on the new I11 powder diffraction beamline at the third‐generation Diamond synchrotron facility where X‐ray beams of high photon brightness are generated by insertion devices. The performance characteristics of these detection units were measured first using a radioactive source (efficiency of detection and background count rate) and then synchrotron X‐rays (peak stability, light yield linearity and response consistency). Here, the results obtained from these tests are reported, and the suitability of the design for the Diamond powder beamline is demonstrated by presenting diffraction data obtained from a silicon powder standard using a prototype multicrystal analyser stage.  相似文献   

15.
An X‐ray one‐dimensionally focusing system, a refracting–diffracting lens (RDL), composed of Bragg double‐asymmetric‐reflecting two‐crystal plane parallel plates and a double‐concave cylindrical parabolic lens placed in the gap between the plates is described. It is shown that the focal length of the RDL is equal to the focal distance of the separate lens multiplied by the square of the asymmetry factor. One can obtain RDLs with different focal lengths for certain applications. Using the point‐source function of dynamic diffraction, as well as the Green function in a vacuum with parabolic approximation, an expression for the double‐diffracted beam amplitude for an arbitrary incident wave is presented. Focusing of the plane incident wave and imaging of a point source are studied. The cases of non‐absorptive and absorptive lenses are discussed. The intensity distribution in the focusing plane and on the focusing line, and its dependence on wavelength, deviation from the Bragg angle and magnification is studied. Geometrical optical considerations are also given. RDLs can be applied to focus radiation from both laboratory and synchrotron X‐ray sources, for X‐ray imaging of objects, and for obtaining high‐intensity beams. RDLs can also be applied in X‐ray astronomy.  相似文献   

16.
Investigations of intact dental enamel as well as carious‐affected human dental enamel were performed using infrared spectromicroscopy and X‐ray diffraction applying synchrotron radiation. Caries of enamel was shown to be characterized by an increase in the number of deformation and valence vibrations for N—C—O, N—H and C=O bonds, a decrease of the crystallinity index, and by the absence of the preferable orientation of hydroxyapatite crystals within the affected enamel. This indicates the presence of destructive processes in the organic matrix of hard tooth tissues.  相似文献   

17.
A method to characterize the spatial coherence of soft X‐ray radiation from a single diffraction pattern is presented. The technique is based on scattering from non‐redundant arrays (NRAs) of slits and records the degree of spatial coherence at several relative separations from 1 to 15 µm, simultaneously. Using NRAs the spatial coherence of the X‐ray beam at the XUV X‐ray beamline P04 of the PETRA III synchrotron storage ring was measured as a function of different beam parameters. To verify the results obtained with the NRAs, additional Young's double‐pinhole experiments were conducted and showed good agreement.  相似文献   

18.
On the basis of the eikonal approximation, X‐ray Bragg‐case focusing by a perfect crystal with parabolic‐shaped entrance surface is considered theoretically. Expressions for focal distances, intensity gain and distribution around the focus spot as well as for the focus spot sizes are obtained. The condition of point focusing is presented. The experiment can be performed using X‐ray synchrotron radiation sources (particularly free‐electron lasers).  相似文献   

19.
A microelectromechanical‐systems‐based calorimeter designed for use on a synchrotron nano‐focused X‐ray beamline is described. This instrument allows quantitative DC and AC calorimetric measurements over a broad range of heating/cooling rates (≤100000 K s?1) and temperature modulation frequencies (≤1 kHz). The calorimeter was used for high‐resolution thermal imaging of nanogram‐sized samples subjected to X‐ray‐induced heating. For a 46 ng indium particle, the measured temperature rise reaches ~0.2 K, and is directly correlated to the X‐ray absorption. Thermal imaging can be useful for studies of heterogeneous materials exhibiting physical and/or chemical transformations. Moreover, the technique can be extended to three‐dimensional thermal nanotomography.  相似文献   

20.
Early caries lesion is a demineralization process that takes place in the top 0.1 mm layer of tooth enamel. In this study, X‐ray microbeam diffraction was used to evaluate the hydroxyapatite crystallites in the subsurface lesion of a bovine enamel section and the results are compared with those obtained by transversal microradiography, a method commonly used for evaluation of tooth mineral. Synchrotron radiation from SPring‐8 was used to obtain a microbeam with a diameter of 6 µm. Wide‐angle X‐ray diffraction reports the amount of hydroxyapatite crystals, and small‐angle X‐ray scattering reports that of voids in crystallites. All three methods showed a marked decrease in the enamel density in the subsurface region after demineralization. As these diffraction methods provide structural information in the nanometre range, they are useful for investigating the mechanism of the mineral loss in early caries lesion at a nanometre level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号