首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F. Solymosi  J. Kiss 《Surface science》1981,108(2):368-380
The adsorption and surface reaction of cyanogen on clean and oxygen covered Cu(111) have been investigated. From electron energy loss measurements, thermal desorption spectroscopy and electron beam effects in Auger spectroscopy, it is proposed that cyanogen adsorbs dissociatively on Cu(111) at 300 K. The activation energy for the desorption was calculated to be 180 kJ/mol. Cyanogen adsorption onto oxygen predosed Cu(111) is inferred to produce the NCO surface species. This interpretation was aided by data of electron energy loss measurements and from HNCO adsorption onto Cu(111) at 300 K. A reaction began in the co-adsorbed layer above 400 K, yielding CO2 and N2.  相似文献   

2.
The kinetics of morphological evolutions of gold nanoparticles on alumina, resulting from evaporation and surface Ostwald-ripening coarsening, have been investigated by means of Auger electron spectroscopy. When the fraction of the covered area is small, the kinetics of evaporation can be related to the desorption of adatoms. In the temperature range 943–1043 K we obtained the evaporation flux J(m-2s-1)=4.8×1027exp[-196±9 (kJ/mol)/RT]. The experimental activation energy of evaporation of gold from a sapphire surface, Qevap=196±9 kJ/mol, is lower than the tabulated value of enthalpy of sublimation of gold, ΔHsubl=368 kJ/mol. At lower temperatures, in the range 623–778 K, Ostwald-ripening experiments, carried out on nanosized clusters, yield the mass transfer surface diffusion coefficients of gold on alumina, Ds(m2/s)=2.6×10-14exp[-58±9 (kJ/mol)/RT]. These results, providing information on the evolution of granular gold films such as those used in catalysts or sensors, are compared to previous data on similar systems. PACS 68.47.Jn; 68.43.Jk; 68.55.-a  相似文献   

3.
The mechanisms of desorption of gold nanoclusters deposited on à substrate under low-energy bombardment with ions and clusters (in the mode of elastic stopping predominance) are analyzed. The classical molecular dynamics method is employed for computer simulation of both “direct” and “indirect” impact of bombarding particles (that is, when a projectile particle either directly interacts with the deposited cluster or penetrates into the substrate without hitting the cluster). Au1 ions and Au400 clusters with an energy of 38 keV and 0.18 keV/atom, respectively, are used as projectile particles. The spherical Au6051 gold nanocluster deposited on a substrate of Al(111) or Au(111) is applied as a target. It is shown that indirect impact does not lead to desorption of the nanocluster from the Al substrate in all considered cases; however, it can initiate desorption from the Au substrate. This phenomenon is quite efficient when the heat spike appearing upon penetration of a projectile particle involves the region of contact between the substrate and the nanocluster deposited on it. As this takes place, an intense flow of the sputtered substrate material transfers a sufficient-for-ejection momentum to the deposited nanocluster.  相似文献   

4.
The adsorption of carbon monoxide is studied on Au/Pd(1 0 0) alloys by means of reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD). The alloy was formed by adsorbing a four-monolayer thick gold film on a Pd(1 0 0) substrate and by heating to various temperatures to form alloys with a range of palladium coverages. The alloy was characterized using X-ray photoelectron spectroscopy and the composition of the outermost layer measured using low-energy ion scattering spectroscopy. CO adsorbs on palladium bridge sites only for palladium coverages greater than 0.5 monolayers (ML) suggesting that next-nearest neighbor sites are preferentially populated by palladium atoms. CO adsorbs on atop palladium sites and desorbs at ∼350 K corresponding to a desorption activation energy of ∼117 kJ/mol. However, at lower palladium coverages, these sites are not occupied and CO desorption states are detected 170 and 112 K corresponding to desorption activation energies of ∼53 kJ/mol and ∼35 kJ/mol, respectively, for these states. It is suggested that these states are due to a restructuring of the surface to form low-coordination gold sites that obscure the atop palladium site.  相似文献   

5.
The present scanning tunneling microscopy study reports on the growth processes of Co vapor-deposited on a dodecanethiol (DDT) self-assembled monolayer (SAM)/Au(111). We observe strongly modified surface and depth diffusions of Co adatoms depending on the growth temperature. Co deposited at 300 K shows an extremely incomplete regime of condensation on the organic layer. Besides, Co penetrates the DDT monolayer and resides at the DDT/Au(111) interface as 2D clusters. This phenomenon takes place through defects in the SAM which are transient channels. In contrast, Co deposited at 50 K shows a complete condensation and nucleates on defects of the SAM layer as 3D islands sitting most likely on top of the DDTs. These results are of interest in the growing field of organic spintronics where the quality of the organic/ferromagnetic interface is a key issue.  相似文献   

6.
Adsorbed O species on Au interfaced with Y2O3-doped-ZrO2 are generated by electrochemical O2− supply. It was found that two oxygen chemisorbed states are formed, which desorb at 420 °C (state α) and 550 °C (state β) with activation energies of desorption ranging between 115–145 kJ/mol and 235–270 kJ/mol, respectively. The strong interaction of the β-state O species with the Au surface causes an over 600 mV increase in Au surface potential and work function while the α-state O species is formed at even more positive catalyst-electrode potential. State α is attributed to normally adsorbed atomic O while the more ionic state β is only created electro-chemically and is mainly responsible for the work function increase of the Au catalyst-electrode surface. Their desorption activation energies of both states decrease linearly with increasing catalyst-electrode potential with slopes of the order of four. Paper presented at the 7th Euroconference on Ionics, Calcatoggio, Corsica, France, Oct. 1–7, 2000.  相似文献   

7.
J. Garra  D.A. Bonnell 《Surface science》2009,603(8):1106-1183
Water and methanol temperature programmed desorption (TPD) measurements were performed on the positive (c+) and negative (c) surfaces of poled ferroelectric lithium niobate (LiNbO3) single crystals. The results indicate that the molecule-surface interactions are both coverage and polarization-dependent. From a comparison of the TPD spectra for the positive and negative surfaces, it is shown that the desorption temperatures of water and methanol are consistently lower on the negative surface by 15 K and 20 K, respectively. The TPD spectra were simulated using the Polanyi-Wigner equation with a coverage-dependent energy term. These calculations show that the polarization dependence of the desorption temperature is due to a difference in the zero-coverage desorption energies on the two surfaces equal to a few kJ per mole. The mechanism for the polarization effect is explored with in situ pyroelectric voltage measurements, which indicate that a surface voltage of ±2 mV develops in the LiNbO3(0 0 0 1) samples during TPD measurements. The magnitude of the pyroelectric-induced surface charge is heating rate dependent.  相似文献   

8.
A Surface Orbital Modified Occupancy — Bond Energy Bond Order (SOMO-BEBO) model calculation of hydrogen adsorption on iron is presented. This calculation represents a novel approach to the CFSO-BEBO method in that the calculation is correlated in a consistent way with the thermal desorption spectra of the hydrogen-iron system. Heats of molecular adsorption calculated are ?32.88, ?35.68 and ?49.57 kJ/mol for the iron (110), (100), and (111) surfaces, respectively. Heats of dissociative adsorption calculated are ?54.40, ?75.30 and ?87.90 kJ/mol for the three states on the iron (111) surface; ?51.21 and ? 73.62 kJ/mol for the two states on the iron (100) surface; and ?63.78 kJ/mol for the one state on the iron (110) surface. Activation energies for dissociative adsorption were found to be small or zero for the iron (111) surface while non-zero activation energies of 49.27 and 45.05 kJ/mol were calculated for the iron (100) and (110) surfaces, respectively. The FeH single-order bond energy has been calculated to be 298.2 kJ/mol. The radius of the hydrogen surface atom has been estimated to be 1.52 × 10?10 m consistent with the expected size of an H? ion. The elimination of certain surface sites for molecular adsorption as a result of the ferromagnetism of iron is suggested by the calculation. The reason for the absence of well defined LEED patterns for hydrogen adsorption on the iron (111) and (100) surfaces [Bozso et al., Appl. Surface Sci. 1 (1977) 103] is explained on the basis of the size of the H? surface ion. The adsorption of hydrogen on the iron (110) surface is consistent with a relatively stable, small-sized H+2 surface ion giving, therefore, a regular LEED pattern and a positive surface potential upon adsorption of hydrogen on this surface.  相似文献   

9.
F. Calaza 《Surface science》2007,601(3):714-722
The adsorption of ethylene on gold-palladium alloys formed on a Pd(1 1 1) surface is investigated using a combination of temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). Various alloy compositions are obtained by depositing four monolayers of gold on a clean Pd(1 1 1) surface and annealing to various temperatures. For gold coverages greater than ∼0.7, ethylene adsorbs primarily on gold sites, desorbing with an activation energy of less than 55 kJ/mol. At gold coverages between ∼0.5 and ∼0.7, ethylene is detected on palladium sites in a π-bonded configuration (with a σ-π parameter of ∼0.1) desorbing with an activation energy of between ∼57 and 62 kJ/mol. Further reducing the gold coverage leads to an almost linear increase in the desorption activation energy of ethylene with increasing palladium content until it eventually reaches a value of ∼76 kJ/mol found for ethylene on clean Pd(1 1 1). A corresponding increase in the σ-π parameter is also found as the gold coverage decreases reaching a value of ∼0.8, assigned to di-σ-bonded ethylene as found on clean Pd(1 1 1).  相似文献   

10.
The growth and chemisorptive properties of monolayer films of Ag and Au deposited on both the Pt(111) and the stepped Pt(553) surfaces were studied using Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and low energy electron diffraction (LEED). AES studies indicate that the growth of Au on Pt(111) and Pt(553) and Ag on Pt(111) proceeds via a Stranski-Krastanov mechanism, whereas the growth of Ag on the Pt(553) surface follows a Volmer-Weber mechanism. Au dissolves into the Pt crystal bulk at temperatures > 800 K, whereas Ag desorbs at temperatures > 900 K. TDS studies of Ag-covered Pt surfaces indicate that the AgPt bond (283 kJ mol?1) is ~25 kJ mol?1 stronger than the AgAg bond (254 kJ mol?1). On the Pt(553) surface the Au atoms are uniformly distributed between terrace and step sites, but Ag preferentially segregates to the terraces. The decrease in CO adsorption on the Pt crystal surfaces is in direct proportion to the Ag or Au coverage. No CO adsorption could be detected for Ag or Au coverages above one monolayer at 300 K and 10?8 Torr. The heat of adsorption of CO on Pt is unaltered by the presence of Ag or Au.  相似文献   

11.
Multiple-decker vanadium-benzene sandwich clusters Vn(benzene)n+1 produced by a laser-vaporization synthesis method were soft-landed onto self-assembled monolayers of alkanethiol (C18H-SAM) and fluorinated alkanethiol (C10F-SAM) at 200 K. Noncontact atomic force microscopy has been used to examine the resulting adsorption states of the clusters landed on the SAMs at room temperature. For each SAM substrate, the aggregates of the deposited clusters were observed at the vacancy islands and near the steps of the SAM surface. The result indicates that, at room temperature, the clusters landed on the SAM substrate thermally diffuse on the surface to form columnar-shape islands around the defect sites of the SAM surface.  相似文献   

12.
Jooho Kim  Bruce E. Koel 《Surface science》2006,600(19):4622-4632
Nanosized gold particles supported on reducible metal oxides have been reported to show high catalytic activity toward CO oxidation at low temperature. This has generated great scientific and technological interest, and there have been many proposals to explain this unusual activity. One intriguing explanation that can be tested is that of Nørskov and coworkers [Catal. Lett. 64 (2000) 101] who suggested that the “unusually large catalytic activity of highly-dispersed Au particles may in part be due to high step densities on the small particles and/or strain effects due to the mismatch at the Au-support interface”. In particular, their calculations indicated that the Au(2 1 1) stepped surface would be much more reactive towards O2 dissociative adsorption and CO adsorption than the Au(1 1 1) surface. We have now studied the adsorption of O2 and O3 (ozone) on an Au(2 1 1) stepped surface. We find that molecular oxygen (O2) was not activated to dissociate and produce oxygen adatoms on the stepped Au(2 1 1) surface even under high-pressure (700 Torr) conditions with the sample at 300-450 K. Step sites do bind oxygen adatoms more tightly than do terrace sites, and this was probed by using temperature programmed desorption (TPD) of O2 following ozone (O3) exposures to produce oxygen adatoms up to a saturation coverage of θO = 0.90 ML. In the low-coverage regime (θO ? 0.15 ML), the O2 TPD peak at 540 K, which does not shift with coverage, is attributed to oxygen adatoms that are bound at the steps on the Au(2 1 1) surface. At higher coverages, an additional lower temperature desorption peak that shifts from 515 to 530 K at saturation coverage is attributed to oxygen adsorbed on the (1 1 1) terrace sites of the Au(2 1 1) surface. Although the desorption kinetics are likely to be quite complex, a simple Redhead analysis gives an estimate of the desorption activation energy, Ed, for the step-adsorbed oxygen of 34 kcal/mol and that for oxygen at the terraces near saturation coverage of 33 kcal/mol, values that are similar to others reported on Au surfaces. Low Energy Electron Diffraction (LEED) indicates an oxygen-induced step doubling on the Au(2 1 1) surface at low-coverages (θO = 0.08-0.17 ML) and extensive disruption of the 2D ordering at the surface for saturation coverages of oxygen (θO ? 0.9 ML). Overall, our results indicate that unstrained step sites on Au(2 1 1) surfaces of dispersed Au nanoparticles do not account for the novel reactivity of supported Au catalysts for CO oxidation.  相似文献   

13.
Haibo Zhao 《Surface science》2004,573(3):413-425
Adsorption and desorption of trans-decahydronaphthalene (C10H18) and bicyclohexane (C12H22) can be used to probe important aspects of non-specific dehydrogenation leading to surface carbon accumulation and establish better estimates of activation energies for C-H bond cleavage at Pt-Sn alloys. This chemistry was studied on Pt(1 1 1) and the (2 × 2)-Sn/Pt(1 1 1) and (√3 × √3)R30°-Sn/Pt(1 1 1) surface alloys by using temperature programmed desorption (TPD) mass spectroscopy and Auger electron spectroscopy (AES). These hydrocarbons are reactive on Pt(1 1 1) surfaces and fully dehydrogenate at low coverages to produce H2 and surface carbon during TPD. At monolayer coverage, 87% of adsorbed C10H18 and 75% C12H22 on Pt(1 1 1) desorb with activation energies of 70 and 75 kJ/mol, respectively. Decomposition of C10H18 is totally inhibited during TPD on these Sn/Pt(1 1 1) alloys and decomposition of C12H22 is reduced to 10% of the monolayer coverage on the (2 × 2)-Sn/Pt(1 1 1) alloy and totally inhibited on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy. C10H18 and C12H22 are more weakly chemsorbed on these two alloys compared to Pt(1 1 1) and these molecules desorb in narrow peaks characteristic of each surface with activation energies of 65 and 73 kJ/mol on the (2 × 2) alloy and 60 and 70 kJ/mol on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy, respectively. Alloyed Sn has little influence on the monolayer saturation coverage of these two molecules, and this is decreased only slightly on these two Sn/Pt(1 1 1) alloys. The use of these two probe molecules enables an improved estimate of the activation energy barriers E* to break aliphatic C-H bonds in alkanes on Sn/Pt alloys; E* = 65-73 kJ/mol on the (2 × 2)-Sn/Pt(1 1 1) alloy and E* ? 70 kJ/mol on the (√3 × √3)R30°-Sn/Pt(1 1 1) alloy.  相似文献   

14.
This study examined the oxidation and reduction behavior of mass-selected Au clusters consisting of 2-13 atoms deposited on silica. An atomic oxygen environment was used for the oxidation of Au. X-ray photoelectron spectroscopy (XPS) was used to identify Au(III) and Au(O). Au5, Au7 and Au13 clusters deposited on the as-prepared SiO2/Si substrates were highly inert towards oxidation, whereas the other clusters could be oxidized, i.e. the chemical property drastically changed with the number of atoms in a cluster. The size-selectivity in chemical reactivity remained unchanged upon air-exposure. The chemical properties of the deposited Au clusters were unchanged after annealing at 250 °C. Annealing at higher temperatures caused structural changes to the surface, as determined by the oxidation behavior. XPS of the deposited Au clusters upon annealing indicated charge transfer from Au to silica.  相似文献   

15.
A hexadecyl monolayer covalently attached to Si(111) surfaces (C16–Si(111)) was prepared at 200 C from 1-hexadecene. Formation of the monolayer was characterized by water contact angle measurement, attenuated total reflection infrared (ATR-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Gas phase synthesized vanadium (V)-benzene (Bz) 1:2 (VBz2) sandwich clusters were size-selectively deposited onto the C16–Si(111) substrate thus prepared and an oxidized Si substrate. Investigation of the resultant clusters was implemented by thermal desorption spectroscopy (TDS). About 30 K increase in threshold desorption temperature of the landed clusters was observed on going from the oxidized Si to the C16–Si(111) substrate, a result indicating that the clusters are more strongly bound to the C16–Si(111) than to the oxidized Si. This result was explained by the penetration of the landed clusters into the hexadecyl monolayer.  相似文献   

16.
《Surface science》1996,364(2):L580-L586
The adsorption and decomposition of formic acid on NiO(111)-p(2 × 2) films grown on Ni(111) single crystal surface were studied by temperature-programmed desorption (TPD) spectroscopy. Exposure of formic acid at 163 K resulted in both molecular adsorption and dissociation to formate. The adsorbed formate underwent further dissociation to H2, CO2 and CO. H2 and CO2 desorbed at the same temperatures of 340, 390 and 520 K, while CO desorbed at 415 and 520 K. The desorption features varied with the formic acid exposure. Two reaction channels were identified for the decomposition of formate under equilibrium with gas-phase formic acid with a pressure of 2.5 × 10−4Pa, one preferentially producing H2 and CO2 with an activation energy of 22 ± 2 kJ mol−1 and the other preferentially producing CO and H2O with an activation energy of 16 ± 2 kJ mol−1. The order of both reaction paths was 0.5 with respect to the pressure of formic acid.  相似文献   

17.
N. Saliba  D. H. Parker  B. E. Koel   《Surface science》1998,410(2-3):270-282
Atomic oxygen coverages of up to 1.2 ML may be cleanly adsorbed on the Au(111) surface by exposure to O3 at 300 K. We have studied the adsorbed oxygen layer by AES, XPS, HREELS, LEED, work function measurements and TPD. A plot of the O(519 eV)/Au(239 eV) AES ratio versus coverage is nearly linear, but a small change in slope occurs at ΘO=0.9 ML. LEED observations show no ordered superlattice for the oxygen overlayer for any coverage studied. One-dimensional ordering of the adlayer occurs at low coverages, and disordering of the substrate occurs at higher coverages. Adsorption of 1.0 ML of oxygen on Au(111) increases the work function by +0.80 eV, indicating electron transfer from the Au substrate into an oxygen adlayer. The O(1s) peak in XPS has a binding energy of 530.1 eV, showing only a small (0.3 eV) shift to a higher binding energy with increasing oxygen coverage. No shift was detected for the Au 4f7/2 peak due to adsorption. All oxygen is removed by thermal desorption of O2 to leave a clean Au(111) surface after heating to 600 K. TPD spectra initially show an O2 desorption peak at 520 K at low ΘO, and the peak shifts to higher temperatures for increasing oxygen coverages up to ΘO=0.22 ML. Above this coverage, the peak shifts very slightly to higher temperatures, resulting in a peak at 550 K at ΘO=1.2 ML. Analysis of the TPD data indicates that the desorption of O2 from Au(111) can be described by first-order kinetics with an activation energy for O2 desorption of 30 kcal mol−1 near saturation coverage. We estimate a value for the Au–O bond dissociation energy D(Au–O) to be 56 kcal mol−1.  相似文献   

18.
We report a low-temperature dynamics study of condensed layers of NF3 on Au(1 1 1) by time-of-flight electron-stimulated desorption ion angular distribution (TOF-ESDIAD), temperature-programmed desorption (TPD) and low-temperature scanning tunneling microscopy (LT-STM). Upon adsorption at 30 K, molecular NF3 adsorption occurs first at the step edges and at minor terrace defect sites with the formation of 2D islands. Within the islands, NF3 is adsorbed in an upright conformation via the nitrogen lone pair electrons projecting fluorine atoms away from the surface as judged by the presence of only a sharp F+ central beam in the ESDIAD pattern. At higher coverages, 3D islands start to populate the surface. Electron bombardment of a thick NF3 (∼6 ML) layer adsorbed on the Au(1 1 1) surface leads to emission of F+, N+, NF+, and ions as observed in the TOF-ESD distribution. Upon heating to ∼37 K, a sudden decrease of the and ion yield, which is not related to thermal desorption, is observed which reflects the surface migration of NF3 molecules, leading to local thinning of the film. The thinning process occurs at the temperature of onset of molecular rotations and self-diffusion in the bulk NF3 crystal. In this process, some NF3 molecules move closer to the surface which results in higher efficiency for ion neutralization by the underlying metal surface. In the TPD spectra, the monolayer desorption is observed to begin at ∼65 K, exhibiting zero-order kinetics with an activation energy of 21 kJ/mol.  相似文献   

19.
Temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the adsorption and photon-induced decomposition of Mo(CO)6. Mo(CO)6 adsorbs molecularly on a Pt(1 1 1) surface with weak interaction at 100 K and desorbs intact at 210 K without undergoing thermal decomposition. Adsorbed Mo(CO)6 undergoes decarbonylation to form surface Mo(CO)x (x ? 5) under irradiation of ultraviolet light. The Mo(CO)x species can release further CO ligands to form Mo adatoms with CO desorption at 285 K. In addition, a fraction of the released CO ligands transfers onto the Pt surface and subsequently desorbs at 350-550 K. The resulting Mo layer deposited on the Pt surface is nearly free of contamination by C and O. The deposited Mo adatoms can diffuse into the bulk Pt at temperatures above 1070 K.  相似文献   

20.
Physical vapor deposition of gold onto a self-assembled monolayer (SAM) of octanethiol on Au(111) has been studied at the molecular level in ultra-high vacuum (UHV) using atomic-resolution scanning tunneling microscopy (STM). A specially prepared SAM with not only the usual etch pits but also co-existing phases and domain boundaries is used for the purpose of studying details of the nucleation process. Etch pits are found to be filled by deposited Au atoms. At the same time, preferential nucleation and growth of gold islands at intersections of different domains, as well as inside the domains of the less dense striped phase, is observed. We find no gold islands within the densely-packed (√3 × √3)R30° phase. High-resolution STM imaging shows that the SAM over the newly formed gold islands adopts the same structure as that in the immediate surroundings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号