共查询到20条相似文献,搜索用时 0 毫秒
1.
For a graph G of order n, the minimum rank of G is defined to be the smallest possible rank over all real symmetric n×n matrices A whose (i,j)th entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We prove an upper bound for minimum rank in terms of minimum degree of a vertex is valid for many graphs, including all bipartite graphs, and conjecture this bound is true over for all graphs, and prove a related bound for all zero-nonzero patterns of (not necessarily symmetric) matrices. Most of the results are valid for matrices over any infinite field, but need not be true for matrices over finite fields. 相似文献
2.
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Minimum rank is a difficult parameter to compute. However, there are now a number of known reduction techniques and bounds that can be programmed on a computer; we have developed a program using the open-source mathematics software Sage to implement several techniques. We have also established several additional strategies for computation of minimum rank. These techniques have been used to determine the minimum ranks of all graphs of order 7. 相似文献
3.
Saieed Akbari Alireza Alipour Javad Ebrahimi Boroojeni Mirhamed Mirjalalieh Shirazi 《Linear algebra and its applications》2007,422(1):341-347
Let G be a graph of order n and rank(G) denotes the rank of its adjacency matrix. Clearly, . In this paper we characterize all graphs G such that or n + 2. Also for every integer n ? 5 and any k, 0 ? k ? n, we construct a graph G of order n, such that . 相似文献
4.
We investigate the expected value of various graph parameters associated with the minimum rank of a graph, including minimum rank/maximum nullity and related Colin de Verdière-type parameters. Let G(v,p) denote the usual Erd?s-Rényi random graph on v vertices with edge probability p. We obtain bounds for the expected value of the random variables mr(G(v,p)), M(G(v,p)), ν(G(v,p)) and ξ(G(v,p)), which yield bounds on the average values of these parameters over all labeled graphs of order v. 相似文献
5.
Lon H. Mitchell 《Linear algebra and its applications》2011,435(6):1311-1314
In this note, we combine a number of recent ideas to give new results on the graph complement conjecture for minimum semidefinite rank. 相似文献
6.
Leslie Hogben 《Linear algebra and its applications》2010,432(8):1961-1974
A graph describes the zero-nonzero pattern of a family of matrices, with the type of graph (undirected or directed, simple or allowing loops) determining what type of matrices (symmetric or not necessarily symmetric, diagonal entries free or constrained) are described by the graph. The minimum rank problem of the graph is to determine the minimum among the ranks of the matrices in this family; the determination of maximum nullity is equivalent. This problem has been solved for simple trees [P.M. Nylen, Minimum-rank matrices with prescribed graph, Linear Algebra Appl. 248 (1996) 303-316, C.R. Johnson, A. Leal Duarte, The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, Linear and Multilinear Algebra 46 (1999) 139-144], trees allowing loops [L.M. DeAlba, T.L. Hardy, I.R. Hentzel, L. Hogben, A. Wangsness. Minimum rank and maximum eigenvalue multiplicity of symmetric tree sign patterns, Linear Algebra Appl. 418 (2006) 389-415], and directed trees allowing loops [F. Barioli, S. Fallat, D. Hershkowitz, H.T. Hall, L. Hogben, H. van der Holst, B. Shader, On the minimum rank of not necessarily symmetric matrices: a preliminary study, Electron. J. Linear Algebra 18 (2000) 126-145]. We survey these results from a unified perspective and solve the minimum rank problem for simple directed trees. 相似文献
7.
Our main result is a sharp bound for the number of vertices in a minimal forbidden subgraph for the graphs having minimum rank at most 3 over the finite field of order 2. We also list all 62 such minimal forbidden subgraphs. We conclude by exploring how some of these results over the finite field of order 2 extend to arbitrary fields and demonstrate that at least one third of the 62 are minimal forbidden subgraphs over an arbitrary field for the class of graphs having minimum rank at most 3 in that field. 相似文献
8.
For a graph G of order n, the maximum nullity of G is defined to be the largest possible nullity over all real symmetric n×n matrices A whose (i,j)th entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. Maximum nullity and the related parameter minimum rank of the same set of matrices have been studied extensively. A new parameter, maximum generic nullity, is introduced. Maximum generic nullity provides insight into the structure of the null-space of a matrix realizing maximum nullity of a graph. It is shown that maximum generic nullity is bounded above by edge connectivity and below by vertex connectivity. Results on random graphs are used to show that as n goes to infinity almost all graphs have equal maximum generic nullity, vertex connectivity, edge connectivity, and minimum degree. 相似文献
9.
The minimum skew rank of a simple graph G is the smallest possible rank among all real skew-symmetric matrices whose (i,j)-entry is nonzero if and only if the edge joining i and j is in G. It is known that a graph has minimum skew rank 2 if and only if it consists of a complete multipartite graph and some isolated vertices. Some necessary conditions for a graph to have minimum skew rank 4 are established, and several families of graphs with minimum skew rank 4 are given. Linear algebraic techniques are developed to show that complements of trees and certain outerplanar graphs have minimum skew rank 4. 相似文献
10.
Ahmet I. Seven 《Linear algebra and its applications》2010,433(6):1154-1169
Quivers of finite mutation type are certain directed graphs that first arised in Fomin-Zelevinsky’s theory of cluster algebras. It has been observed that these quivers are also closely related with different areas of mathematics. In fact, main examples of finite mutation type quivers are the quivers associated with triangulations of surfaces. In this paper, we study structural properties of finite mutation type quivers in relation with the corresponding skew-symmetric matrices. We obtain a characterization of finite mutation type quivers that are associated with triangulations of surfaces and give a new numerical invariant for their mutation classes. 相似文献
11.
Swastik Kopparty 《Linear algebra and its applications》2008,428(7):1761-1765
We provide a counterexample to a recent conjecture that the minimum rank over the reals of every sign pattern matrix can be realized by a rational matrix. We use one of the equivalences of the conjecture and some results from projective geometry. As a consequence of the counterexample we show that there is a graph for which the minimum rank of the graph over the reals is strictly smaller than the minimum rank of the graph over the rationals. We also make some comments on the minimum rank of sign pattern matrices over different subfields of R. 相似文献
12.
Zero forcing sets and the minimum rank of graphs 总被引:2,自引:0,他引:2
AIM Minimum Rank - Special Graphs Work Group 《Linear algebra and its applications》2008,428(7):1628-1648
The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. This paper introduces a new graph parameter, Z(G), that is the minimum size of a zero forcing set of vertices and uses it to bound the minimum rank for numerous families of graphs, often enabling computation of the minimum rank. 相似文献
13.
Francesco Barioli Shaun M. Fallat Ronald L. Smith 《Linear algebra and its applications》2008,429(7):1568-1578
The minimum rank of a graph G is defined as the smallest possible rank over all symmetric matrices governed by G. It is well known that the minimum rank of a connected graph is at least the diameter of that graph. In this paper, we investigate the graphs for which equality holds between minimum rank and diameter, and completely describe the acyclic and unicyclic graphs for which this equality holds. 相似文献
14.
15.
Some old results about spectra of partitioned matrices due to Goddard and Schneider or Haynsworth are re-proved. A new result is given for the spectrum of a block-stochastic matrix with the property that each off-diagonal block has equal entries and each diagonal block has equal diagonal entries and equal off-diagonal entries. The result is applied to the study of the spectra of the usual graph matrices by partitioning the vertex set of the graph according to the neighborhood equivalence relation. The concept of a reduced graph matrix is introduced. The question of when n-2 is the second largest signless Laplacian eigenvalue of a connected graph of order n is treated. A recent conjecture posed by Tam, Fan and Zhou on graphs that maximize the signless Laplacian spectral radius over all (not necessarily connected) graphs with given numbers of vertices and edges is refuted. The Laplacian spectrum of a (degree) maximal graph is reconsidered. 相似文献
16.
Francesco Barioli H. Tracy Hall Leslie Hogben Bryan Shader Hein van der Holst 《Linear algebra and its applications》2010,433(2):401-536
The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z+(G) is introduced, and shown to be equal to |G|-OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hermitian positive semidefinite minimum rank is presented. 相似文献
17.
Lingsheng Shi 《Linear algebra and its applications》2007,422(1):58-66
The spectral radius of a (directed) graph is the largest eigenvalue of adjacency matrix of the (directed) graph. We give the relation on the characteristic polynomials of a directed graph and its line graph, and obtain sharp bounds on the spectral radius of directed graphs. We also give the relation on the spectral radii of a graph and its line graph. As a consequence, the spectral radius of a connected graph does not exceed that of its line graph except that the graph is a path. 相似文献
18.
Let G be a graph with n vertices and m edges. Let λ1, λ2, … , λn be the eigenvalues of the adjacency matrix of G, and let μ1, μ2, … , μn be the eigenvalues of the Laplacian matrix of G. An earlier much studied quantity is the energy of the graph G. We now define and investigate the Laplacian energy as . There is a great deal of analogy between the properties of E(G) and LE(G), but also some significant differences. 相似文献
19.
For a simple graph G, let denote the complement of G relative to the complete graph and let PG(x)=det(xI-A(G)) where A(G) denotes the adjacency matrix of G. The complete product G∇H of two simple graphs G and H is the graph obtained from G and H by joining every vertex of G to every vertex of H. In [2]PG∇H(x) is represented in terms of PG, , PH and . In this paper we extend the notion of complete product of simple graphs to that of generalized complete product of matrices and obtain their characteristic polynomials. 相似文献
20.
Hye Kyung Kim 《Discrete Mathematics》2008,308(4):555-564
For an abelian group Γ, a formula to compute the characteristic polynomial of a Γ-graph has been obtained by Lee and Kim [Characteristic polynomials of graphs having a semi-free action, Linear algebra Appl. 307 (2005) 35-46]. As a continuation of this work, we give a computational formula for generalized characteristic polynomial of a Γ-graph when Γ is a finite group. Moreover, after showing that the reciprocal of the Bartholdi zeta function of a graph can be derived from the generalized characteristic polynomial of a graph, we compute the reciprocals of the Bartholdi zeta functions of wheels and complete bipartite graphs as an application of our formula. 相似文献