首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let K be a commutative ordered field and L =K(i) the quadratic extension of K with i2 = ?1. Let H be the set of all Hermitian 2 × 2 matrices over the field extension (L,K) and let H(2),+ ? {A ∈ H ¦ det A ∈ K(2), Tr A > 0}. Then we prove that (H(2),+,⊕) is a K-loop with respect to the operation $$ {\rm A}\ \oplus \ {\rm B}= {1 \over {\rm TrA} + 2{\sqrt {\rm det A}}} ({\sqrt {\rm det A}}\ E +A){\rm B} ({\sqrt {\rm det A}}\ E +A) $$ where E is the identity matrix.  相似文献   

2.
Let \(\chi _0^n = \left\{ {X_t } \right\}_0^n \) be a martingale such that 0≦Xi≦1;i=0, …,n. For 0≦p≦1 denote by ? p n the set of all such martingales satisfying alsoE(X0)=p. Thevariation of a martingale χ 0 n is denoted byV 0 n and defined by \(V(\chi _0^n ) = E\left( {\sum {_{l = 0}^{n - 1} } \left| {X_{l + 1} - X_l } \right|} \right)\) . It is proved that $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\mathop {Sup}\limits_{x_0^n \in \mathcal{M}_p^n } \left[ {\frac{1}{{\sqrt n }}V(\chi _0^n )} \right]} \right\} = \phi (p)$$ , where ?(p) is the well known normal density evaluated at itsp-quantile, i.e. $$\phi (p) = \frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi _p^2 ) where \int_{ - \alpha }^{x_p } {\frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi ^2 )} dx = p$$ . A sequence of martingales χ 0 n ,n=1,2, … is constructed so as to satisfy \(\lim _{n \to \infty } (1/\sqrt n )V(\chi _0^n ) = \phi (p)\) .  相似文献   

3.
The defect function [introduced in Karzel and Marchi (Results Math 47:305–326, 2005)] of an invariant reflection structure (P, I) is strictly connected to the precession maps of the corresponding K-loop (P, +), therefore it permits a classification of such structures with respect to the algebraic properties of their K-loop. In the ordinary case (i.e. when the K-loop is not a group) we define, by means of products of three involutions, four different families of blocks denoted, respectively, by ${\mathcal{L}_G, \mathcal{L}, \mathcal{B}_G, \mathcal{B}}$ (cf. Sect. 4) so that we can provide the reflection structure with some appropriate incidence structure. On the other hand we consider in (P, +) two types of centralizers and recognize a strong connection between them and the aforesaid blocks: actually we prove that all the blocks of (P, I) can be represented as left cosets of suitable centralizers of the loop (P, +) (Theorem 6.1). Finally we give necessary and sufficient conditions in order that the incidence structures ${(P, \mathcal{L}_G)}$ and ${(P,\mathcal{L})}$ become linear spaces (cf. Theorem 8.6).  相似文献   

4.
Given a function $\mathbb{L}_2 $ (?), its Fourier transform $g(x) = \hat f(x) = F[f](x) = \frac{1} {{\sqrt {2\pi } }}\int\limits_{ - \infty }^{ + \infty } {f(x)e^{ - ixt} dt} ,f(t) = F^{ - 1} [g](t) = \frac{1} {{\sqrt {2\pi } }}\int\limits_{ - \infty }^{ + \infty } {g(x)e^{ - ixt} dx} $ and the inverse Fourier transform are considered in the space f ε $\mathbb{L}_2 $ (?). New estimates are presented for the integral $\int\limits_{|t| \geqslant N} {|g(t)|^2 dt} = \int\limits_{|t| \geqslant N} {|\hat f(t)|^2 dt} ,N \geqslant 1,$ in the vase of f ε $\mathbb{L}_2 $ (?) characterized by the generalized modulus of continuity of the kth order constructed with the help of the Steklov function. Some other estimates associated with this integral are proved.  相似文献   

5.
Let K be a totally real number field, π an irreducible cuspidal representation of ${{\rm GL}_{2}(K){\backslash}{\rm GL}_{2}(\mathbb{A}K)}$ with unitary central character, and χ a Hecke character of conductor ${\mathfrak{q}}$ . Then ${L(1/2, \pi\oplus\chi) \ll (\mathcal{N}\mathfrak{q})^{\frac{1}{2}-\frac{1}{8}(1-2\theta)+\epsilon}}$ , where 0 ≤ θ ≤ 1/2 is any exponent towards the Ramanujan–Petersson conjecture (θ =  1/9 is admissible). The proof is based on a spectral decomposition of shifted convolution sums and a generalized Kuznetsov formula.  相似文献   

6.
In 1945,B. Segre proved the following classical theorem: Every irrational ξ has an infinity of rational approximationsp/q such that (0) $$\frac{{ - 1}}{{q^2 \sqrt {1 + 4\tau } }}< \frac{p}{q} - \xi< \frac{\tau }{{q^2 \sqrt {1 + 4\tau } }},$$ where τ is any given non-negative real number. Segre conjectured that when τ≠0 and τ?1 is not an integer, inequalities (0) can be improved by replacing \(\sqrt {1 + 4\tau } \) and \(\sqrt {1 + 4\tau } /\tau \) with larger numbers. In this paper we prove that these two numbers can be replaced with the larger numbers \(\sqrt {1 + 4\tau } + 0.2\tau ^2 \{ \tau ^{ - 1} \} (1 - \{ \tau ^{ - 1} \} )\) and \(\sqrt {1 + 4\tau } /\tau + 0.2\tau ^2 \{ \tau ^{ - 1} \} (1 - \{ \tau ^{ - 1} \} )\) respectively, where {τ?1} is the fractional part of τ?1.  相似文献   

7.
The direct method is applied to the two dimensional Burgers equation with a variable coefficient (u t + uu x ? u xx ) x + s(t)u yy = 0 is transformed into the Riccati equation $H' - \tfrac{1} {2}H^2 + \left( {\tfrac{\rho } {2} - 1} \right)H = 0$ via the ansatz $u\left( {x,y,t} \right) = \tfrac{1} {{\sqrt t }}H(\rho ) + \tfrac{y} {{2\sqrt t }}\rho \left( {x,y,t} \right) = \tfrac{x} {{\sqrt t }} - y$ , provided that s(t) = t ?3/2. Further, a generalized Cole-Hopf transformations $u\left( {x,y,t} \right) = \tfrac{y} {{2\sqrt t }} - \tfrac{2} {{\sqrt t }}\tfrac{{U_\rho (\rho ,r)}} {{U(\rho ,r)}}$ , $\rho \left( {x,y,t} \right) = \tfrac{x} {{\sqrt t }} - y$ , r(t) = log t is derived to linearize (u t + uu x ? u xx ) x + t ?3/2 u yy to the parabolic equation $U_r = U_{\rho \rho } + \left( {\tfrac{\rho } {2} - 1} \right)U_\rho$ .  相似文献   

8.
Given three mutually tangent circles with bends (related to the reciprocal of the radius) a, b and c respectively, an important quantity associated with the triple is the value ${\langle a,b,c \rangle:=ab+ac+bc}$ . In this note we show in the case when a central circle with bend b 0 is “surrounded” by four circles, i.e., a flower with four petals, with bends b 1, b 2, b 3,b 4 that either $$\sqrt{\langle b_{0},b_{1},b_{2} \rangle}+\sqrt{\langle b_{0},b_{3},b_{4} \rangle}=\sqrt{\langle b_{0},b_{2},b_{3} \rangle}+\sqrt{\langle b_{0},b_{4},b_{1} \rangle}$$ or $$\sqrt{\langle b_{0},b_{1},b_{2} \rangle}=\sqrt{\langle b_{0},b_{2},b_{3} \rangle}+\sqrt{\langle b_{0},b_{3},b_{4} \rangle}+\sqrt{\langle b_{0},b_{4},b_{1} \rangle}$$ (where ${\langle b_{0},b_{1},b_{2} \rangle}$ is chosen to be maximal). As an application we give a sufficient condition for the alternating sum of the ${\sqrt{\langle a,b,c\rangle}}$ of a packing in standard position to be 0. (A packing is in standard position when we have two circles with bend 0, i.e., parallel lines, and the remaining circles are packed in between.)  相似文献   

9.
For series of random variables $\sum\limits_{k = 1}^\infty {a_k x_k }$ ,a K R 1, {X K } K=1 being an Ising system, i.e., for each n ≥ 2 the joint distribution of {X K } K=1 n has the form $$P_n (t_1 ,...,t_n ) = ch^{ - (n - 1)} J \cdot exp(J\sum\limits_{k - 1}^{n - 1} {t_k t_{k + 1} )\prod\limits_{k = 1}^n {\frac{1}{2}\delta (t_{k^{ - 1} }^2 ),J > 0} }$$ one obtains a criterion for almost everywhere convergence: $\sum\limits_{k = 1}^\infty {a_k^2< \infty }$ . The relation between the asymptotic behavior of large deviations of the sum and the rate of decrease of the sequence {ak} of the coefficients is investigated.  相似文献   

10.
Let p 1p 2 ≡ 1 (mod 8) be primes such that \(\left( {\tfrac{{p_1 }} {{p_2 }}} \right) = - 1\) and \(\left( {\tfrac{2} {{a + b}}} \right) = - 1\) , where p 1 p 2 = a 2+b 2. Let \(i = \sqrt { - 1} \) , d = p 1 p 2, \(\Bbbk = \mathbb{Q}(\sqrt {d,} i),\Bbbk _2^{(1)} \) be the Hilbert 2-class field and \(\Bbbk ^{(*)} = \mathbb{Q}(\sqrt {p_1 } ,\sqrt {p_2 } ,i)\) be the genus field of \(\Bbbk \) . The 2-part \(C_{\Bbbk ,2} \) of the class group of \(\Bbbk \) is of type (2, 2, 2), so \(\Bbbk _2^{(1)} \) contains seven unramified quadratic extensions \(\mathbb{K}_j /\Bbbk \) and seven unramified biquadratic extensions \(\mathbb{L}_j /\Bbbk \) . Our goal is to determine the fourteen extensions, the group \(C_{\Bbbk ,2} \) and to study the capitulation problem of the 2-classes of \(\Bbbk \) .  相似文献   

11.
В стАтьЕ пОлУЧЕНО УсИ лЕНИЕ НЕскОлькИх РЕж УльтАтОВ О РАцИОНАльНОИ АппРОк сИМАцИИx α НА [0,1]. ДОкАжАНО, ЧтО НАИ лУЧшИЕ пРИБлИжЕНИьr n (x α) ФУНкцИИx α НА [0,1] РАцИОНА льНыМИ ДРОБьМИ пОРьДкАn Дль лУБОгО НЕцЕлОгО пОлО жИтЕльНОгО А УДОВлЕтВОРьУт сООт НОшЕНИУ $$\mathop {\lim }\limits_{n \to \infty } r_n^{1/\sqrt n } (x^\alpha ) = \exp ( - 2\pi \sqrt \alpha ).$$ гИпОтЕжА О спРАВЕДлИ ВОстИ ЁтОИ ОцЕНкИ Был А ВыскАжАНА А. А. гОНЧАРОМ В 1974 г. кРОМЕ тОгО, тОЧНАь ОцЕ НкА, пОлУЧЕННАь Н. с. Вь ЧЕслАВОВНы Дль слУЧАь А=1/2 РАс-пРОс тРАНьЕтсь В РАБОтЕ НА пРОИжВОль НыЕ пОлОжИтЕльНыЕ РА цИОНАльНыЕ ЧИслА α: $$b_\alpha |\sin \pi \alpha |< r_n (x^\alpha )\exp (2\pi \sqrt {\alpha n} )< B_{p,q} ,$$ жДЕсь α=p/q.  相似文献   

12.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

13.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

14.
In [17] the third author presented Moebius geometry for sub-manifolds in Sn and calculated the first variational formula of the Willmore functional by using Moebius invariants. In this paper we present the second variational formula for Willmore submanifolds. As an application of these variational formulas we give the standard examples of Willmore hypersurfaces $ \lbrace W_{k}^{m}:= S^{k}(\sqrt {(m-k)/m}) \times S^{m-k}(\sqrt {k/m}), 1 \leq k \leq m-1 \rbrace $ in Sm+1 (which can be obtained by exchanging radii in the Clifford tori $ S^{k}(\sqrt {k/m}) \times S^{m-k}(\sqrt {(m-k)/m)})$ and show that they are stable Willmore hypersurfaces. In case of surfaces in S3, the stability of the Clifford torus $ S^{1}{({1\over \sqrt {2}})}\times S^{1}{({1\over \sqrt {2}})} $ was proved by J. L. Weiner in [18]. We give also some examples of m-dimensional Willmore submanifolds in an n-dimensional unit sphere Sn.  相似文献   

15.
Let fC[?1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes $ \left\{ {\cos \frac{{2k - 1}} {{2n}}\pi } \right\} \cup \{ - 1,1\} $ be Δ n + 2(f, x). In this paper we study the estimate of Δ n + 2(f,x), that keeps the interpolation property. As a result we prove that $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left| {T_n (x)} \right|\ln (n + 1) + \omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}\left| {T_n (x)} \right|} \right)} \right\}, $$ where T n (x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if fC r [?1, 1] with r ≧ 1, then $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\frac{{\sqrt {1 - x^2 } }} {{n^r }}\left| {T_n (x)} \right|\omega \left( {f^{(r)} ,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left( {\left( {\sqrt {1 - x^2 } + \frac{1} {n}} \right)^{r - 1} \ln (n + 1) + 1} \right)} \right\}. $$   相似文献   

16.
Let $f(x,y,x,w) = x^2 + y^2 + z^2 + Dw^2$ , where $D >1$ is an integer such that $D \ne d^2$ and ${{\sqrt n } \mathord{\left/ {\vphantom {{\sqrt n } {\sqrt D = n^\theta , 0 < \theta < {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}} \right. \kern-0em} {\sqrt D = n^\theta , 0 < \theta < {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}$ . Let $rf(n)$ be the number of representations of n by f. It is proved that $r_f (n) = \pi ^2 \frac{n}{{\sqrt D }}\sigma _f (n) + O\left( {\frac{{n^{1 + \varepsilon - c(\theta )} }}{{\sqrt D }}} \right),$ where $\sigma _f (n)$ is the singular series, $c(\theta ) >0$ , and ε is an arbitrarily small positive constant. Bibliography: 14 titles.  相似文献   

17.
Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms ${G \ni a \mapsto ka \in G}$ , ${k \in K}$ . Let ${{\mathfrak{H}}}$ be a complex Hilbert space and let ${{\mathcal L}({\mathfrak{H}})}$ be the algebra of all bounded linear operators on ${{\mathfrak{H}}}$ . A mapping ${u \colon G \to {\mathcal L}({\mathfrak{H}})}$ is termed a K-spherical function if it satisfies (1) ${|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}$ for any ${a,b\in G}$ , where |K| denotes the cardinality of K, and (2) ${u (0) = {\rm id}_{\mathfrak {H}},}$ where ${{\rm id}_{\mathfrak {H}}}$ designates the identity operator on ${{\mathfrak{H}}}$ . The main result of the paper is that for each K-spherical function ${u \colon G \to {\mathcal {L}}({\mathfrak {H}})}$ such that ${\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}$ there is an invertible operator S in ${{\mathcal L}({\mathfrak{H}})}$ with ${\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}$ such that the K-spherical function ${{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}$ defined by ${{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}$ satisfies ${{\tilde{u}}(-a) = {\tilde{u}}(a)^*}$ for each ${a \in G}$ . It is shown that this last condition is equivalent to insisting that ${{\tilde{u}}(a)}$ be normal for each ${a \in G}$ .  相似文献   

18.
We show that the number of elements in FM(1+1+n), the modular lattice freely generated by two single elements and an n-element chain, is 1 $$\frac{1}{{6\sqrt 2 }}\sum\limits_{k = 0}^{n + 1} {\left[ {2\left( {\begin{array}{*{20}c} {2k} \\ k \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {2k} \\ {k - 2} \\ \end{array} } \right)} \right]} \left( {\lambda _1^{n - k + 2} - \lambda _2^{n - k + 2} } \right) - 2$$ , where \(\lambda _{1,2} = {{\left( {4 \pm 3\sqrt 2 } \right)} \mathord{\left/ {\vphantom {{\left( {4 \pm 3\sqrt 2 } \right)} 2}} \right. \kern-0em} 2}\) .  相似文献   

19.
The following matrices are considered $$A_k = \left( {\begin{array}{*{20}c} k \\ 1 \\ \end{array} \begin{array}{*{20}c} 2 \\ k \\ \end{array} } \right), B_k \left( {\begin{array}{*{20}c} {k - 1} \\ 1 \\ \end{array} \begin{array}{*{20}c} 1 \\ {k + 1} \\ \end{array} } \right),k \in \mathbb{N},$$ which are strong shift equivalent in the sense ofWilliams [7]. In case \(k + \sqrt 2 \) is a prime number of the algebraic field \(\mathbb{Q}(\sqrt 2 )\) matrices are defined which determine the possible choices of rank two matrices connectingA k andB k in the sense of strong shift equivalence. A complete list of all these matrices is given.  相似文献   

20.
Let S j : (Ω, P) → S 1 ? ? be an i.i.d. sequence of Steinhaus random variables, i.e. variables which are uniformly distributed on the circle S 1. We determine the best constants a p in the Khintchine-type inequality $${a_p}{\left\| x \right\|_2} \leqslant {\left( {{\text{E}}{{\left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|}^p}} \right)^{1/p}} \leqslant {\left\| x \right\|_2};{\text{ }}x = ({x_j})_{j = 1}^n \in {{\Bbb C}^n}$$ for 0 < p < 1, verifying a conjecture of U. Haagerup that $${a_p} = \min \left( {\Gamma {{\left( {\frac{p}{2} + 1} \right)}^{1/p}},\sqrt 2 {{\left( {{{\Gamma \left( {\frac{{p + 1}}{2}} \right)} \mathord{\left/ {\vphantom {{\Gamma \left( {\frac{{p + 1}}{2}} \right)} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right)}^{1/p}}} \right)$$ . Both expressions are equal for p = p 0 }~ 0.4756. For p ≥ 1 the best constants a p have been known for some time. The result implies for a norm 1 sequence x ∈ ? n , ‖x2 = 1, that $${\text{E}}\ln \left| {\frac{{{S_1} + {S_2}}}{{\sqrt 2 }}} \right| \leqslant {\text{E}}\ln \left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|$$ , answering a question of A. Baernstein and R. Culverhouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号