首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The rare-earth tricyanomelaminates, [NH(4)]Ln[HC(6)N(9)](2)[H(2)O](7)xH(2)O (LnTCM; Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy), have been synthesized through ion-exchange reactions. They have been characterized by powder as well as single-crystal X-ray diffraction analysis, vibrational spectroscopy, and solid-state (1)H, (13)C, and (15)N MAS NMR spectroscopy. The X-ray powder pattern common to all nine rare-earth tricyanomelaminates LnTCM (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) indicates that they are isostructural. The single-crystal X-ray diffraction pattern of LnTCM is indicative of non-merohedral twinning. The crystals are triclinic and separation of the twin domains as well as refinement of the structure were successfully carried out in the space group P1 for LaTCM (LaTCM; P1, Z=2, a=7.1014(14), b=13.194(3), c=13.803(3) A, alpha=90.11(3), beta=77.85(3), gamma=87.23(3) degrees , V=1262.8(4) A(3)). In the crystal structure, each Ln(3+) is surrounded by two nitrogen atoms from two crystallographically independent tricyanomelaminate moieties and seven oxygen atoms from crystal water molecules. The positions of all of the hydrogen atoms of the ammonium ions and water molecules could not be located from difference Fourier syntheses. The presence of [NH(4)](+) ions as well as two NH groups belonging to two crystallographically independent monoprotonated tricyanomelaminate moieties has only been confirmed by subjecting LaTCM to solid-state (1)H, (13)C, and (15)N{(1)H} cross-polarization (CP) MAS NMR and advanced CP experiments such as cross-polarization combined with polarization inversion (CPPI). The (1)H 2D double-quantum single-quantum homonuclear correlation (DQ SQ) spectrum and the (15)N{(1)H} 2D CP heteronuclear-correlation (HETCOR) spectrum have revealed the hydrogen-bonded (N--HN) dimer of monoprotonated tricyanomelaminate moieties as well as H-bonding through [NH(4)](+) ions and H(2)O molecules. The structures of the other eight rare-earth tricyanomelaminates (LnTCM; Ln=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) have been refined from X-ray powder diffraction data by the Rietveld method. Photoluminescence studies of [NH(4)]Eu[HC(6)N(9)](2)[H(2)O](7)xH(2)O have revealed orange-red (lambda(max)=615 nm) emission due to the (5)D(0)-(7)F(2) transition, whereas [NH(4)]Tb[HC(6)N(9)](2)[H(2)O](7)xH(2)O has been found to show green emission with a maximum at 545 nm arising from the (5)D(4)-(7)F(5) transition. DTA/TG studies of [NH(4)]Ln[HC(6)N(9)](2)[H(2)O](7)xH(2)O have indicated several phase transitions associated with dehydration of the compounds above 150 degrees C and decomposition above 200 degrees C.  相似文献   

2.
The reaction of K28Li5H7[P8W48O184].92H2O with early lanthanides under hydrothermal and conventional conditions yields novel structures of the molecular formula Ln4(H2O)28K6Li7[K subsetP8W48O184(H4W4O12)2Ln2(H2O)10] congruent with 57H2O, Ln = La (1), Ce (2, 2a), Pr (3), Nd (4), in which the central cavity of the precursor anion is occupied by lanthanide cations and H4W4O12 moieties. The new heteropolyanions were characterized by elemental analysis, infrared spectroscopy, 31P NMR, and X-ray crystallography. All of the crystals are monoclinic, space group C2/m, with lattice constants (A, Epsilon) a = 33.061(3), b = 30.986(3), c = 15.1649(13), beta = 103.607(2), (1); a = 33.0577(16), b = 31.0562(15), c = 15.2320(7), beta = 104.015(2), (2); a = 33.0577(16), b = 31.0562(15), c = 15.2320(7), beta = 104.015(2), (2a); a = 33.007(2), b = 31.060(2), c = 15.2129(10), beta = 104.0140(10), (3); a = 32.913(19), b = 31.155(18), c = 15.135(9), beta = 103.495(11), (4); and Z = 2.  相似文献   

3.
The isotypic title compounds Ba4Pr7[Si12N23O][BN3], Ba4Nd7[Si12N23O][BN3], and Ba4Sm7[Si12N23O][BN3] were prepared by reaction of Pr, Nd, or Sm, with barium, BaCO3, Si(NH)2, and poly(boron amide imide) in nitrogen atmosphere in tungsten crucibles using a radiofrequency furnace at temperatures up to 1650 C. They were obtained as main products (approximately 70%) embedded in a very hard glass matrix in the form of intense dark green (Pr), orange-brown (Sm), or dark red (Nd) large single crystals, respectively. The stoichiometric composition of Ba4Sm7[Si12N23O][BN3] was verified by a quantitative elemental analysis. According to the single-crystal X-ray structure determinations (Ba4Ln7[Si12N23][BN3], Z= , P6 with Ln = Pr: a = 1225.7(1), c = 544.83(9) pm, R1 = 0.013, wR2 = 0.030; Ln = Nd: a = 1222.6(1), c = 544.6(1) pm, R1 = 0.017, wR2 = .039; Ln = Sm: a = 1215.97(5), c = 542.80(5) pm, R1 = 0.047, wR2 = 0.099) all three compounds are built up by a framework structure [Si12N23O]23- of corner-sharing SiX4 tetrahedrons (X = O, N). The oxygen atoms are randomly distributed over the X positions. The trigonal-planar orthonitridoborate ions [BN3]6- and also the Ln(3)3+ are situated in hexagonal cages of the framework (bond lengths Si-(N/O) 169-179 pm for Ln=Pr). The remaining Ba2+ and Ln3- ions are positioned in channels of the large-pored network. The trigonal-planar [BN3]6- ions have a B-N distance of 147.1(6) pm (for Ln = Pr). Temperature-dependent susceptibility measurements for Ba4Nd7[Si12N23O][BN3] revealed Curie-Weiss behavior above 60 K with an experimental magnetic moment of muexp = 3.36(5) microB/Nd. The deviation from Curie-Weiss behavior below 60 K may be attributed to crystal field splitting of the J = 9/2 ground state of the Nd3+ ions. No magnetic ordering is evident down to 4.2 K.  相似文献   

4.
The complexes [Et(4)N](3)[Ln(eta(2)-dcnm)(6)] (Ln = La, Ce, Nd, Gd, dcnm = dicyanonitrosomethanide) have discrete N, O 12-coordination owing to symmetrical chelation of the nitroso donor groups.  相似文献   

5.
1 INTRODUCTION The Prussian-Blue analogues and hybridPrussian-Blue families have attracted great attentionfor decades due to their rich and interesting struc-tures and magnetic behaviors[1]. In order to find outthe features of the ligands to form var…  相似文献   

6.
The reactivity of the [alpha-SiW(11)O(39)](8-) monovacant polyoxometalate with lanthanide has been investigated for four different trivalent rare-earth cations (Ln = Nd(III), Eu(III), Gd(III), Yb(III)). The crystal structures of KCs(4)[Yb(alpha-SiW(11)O(39))(H(2)O)(2)] x 24H(2)O (1), K(0.5)Nd(0.5)[Nd(2)(alpha-SiW(11)O(39))(H(2)O)(11)] x 17H(2)O (2a), and Na(0.5)Cs(4.5)[Eu(alpha-SiW(11)O(39))(H(2)O)(2)] x 23H(2)O (3a) are reported. The solid-state structure of compound 1 consists of linear wires built up of [alpha-SiW(11)O(39)](8-) anions connected by Yb(3+) cations, while the linkage of the building blocks by Eu(3+) centers in 3a leads to the formation of zigzag chains. In 2a, dimeric [Nd(2)(alpha-SiW(11)O(39))(2)(H(2)O)(8)](10-) entities are linked by four Nd(3+) cations. The resulting chains are connected by lanthanide ions, leading to a bidimensional arrangement. Thus, the dimensionality, the organization of the polyoxometalate building units, and the Ln/[alpha-SiW(11)O(39)](8-) ratio in the solid state can be tuned by choosing the appropriate lanthanide. The luminescent properties of compound 3a have been studied, showing that, in solution, the polymer decomposes to give the monomeric complex [Eu(alpha-SiW(11)O(39))(H(2)O)(4)](5-). The lability of the four exogenous ligands connected to the rare earth must allow the functionalization of this lanthanide polyanion.  相似文献   

7.
Preparation and Crystal Structure of (4-Picolinium)[LnCl4(H2O)3] (Ln = La, Ce, Pr, Nd) The complex water containing chlorides (4-Picolinium)[LnCl4(H2O)3] (Ln = La, Ce, Pr, Nd) were prepared for the first time, and the crystal structures of (4-Picolinium)[LnCl4(H2O)3] (Ln = La, Pr) were determined on single crystals by X-ray methods. The isotypic compounds crystallize with triclinic symmetry, space group P1 , Z = 2. Surprisingly there exist the dimeric complex anions [Ln2Cl8(H2O)6]2? (Ln = La, Pr).  相似文献   

8.
The three-dimensional frameworks infinity(3)[LnCl3(1,4-Ph(CN)2)] of the lanthanides Ln = Sm (1), Gd (2), Tb (3), and infinity(3)[Ln2Cl6(1,4-Ph(CN)2)] for the group 3 metal Y (4) were obtained as single crystalline materials by the reaction of the anhydrous chlorides of the referring rare earth elements with a melt of 1,4-benzodinitrile. No additional solvents were used for the reactions. The dinitrile ligand is strongly coordinating and substitutes parts of the chlorine coordination. The Ln halide structures are reduced to two-dimensional networks, whereas coordination of both nitrile functions to the metal ions renders bridging in the third direction accessible. This enables formation of new metal organic framework (MOF) structure types with the large 1,4-benzodinitrile spacers interlinking infinity (2)[LnCl3] planes. In comparison to 1,4-Ph(CN)2 the mono functional benzonitrile ligand does not constitute framework structures, which is underlined by comparison with a reaction of yttrium chloride with PhCN resulting in the molecular complex [Y2Cl6(PhCN)6] (5) with end-on coordination PhCN ligands. The coordination spheres of the rare earth ions consist of double capped (infinity(3)[LnCl3(1,4-Ph(CN)2)] (1-3)) as well as single capped trigonal prisms (infinity(3)[Ln2Cl6(1,4-Ph(CN)2)] (4)) of chloride ions and N[triple bond]C groups while 5 displays edge sharing pentagonal bipyramids as coordination polyhedra. Sm (1), Gd (2), and Tb (3) exhibit isotypic framework structures with intercrossing dinitrile ligands. The group 3 metal Y (4) gives a framework with a coplanar arrangement of ligands and a lower ligand content. The largest cavities within the MOF structures of 1-4 have diameters of 3.9-8.0 A. All compounds were identified by single crystal X-ray analysis. Mid IR, Far IR, and Raman spectroscopy, microanalyses and simultaneous Differential Thermal Analysis-Thermogravimetry (DTA/TG) were also carried out to characterize the products. Crystal data for infinity(3)[LnCl3(1,4-Ph(CN)2)] (1-3): Pnma, T = 170(2) K; Sm (1): a = 7.172(1) A, b = 22.209(3) A, c = 6.375(1) A, V = 1015.4(3) A(3), R1 for F(o) > 4sigma(F(o)) = 0.032, wR2 = 0.079. Gd (2): a = 7.116(1) A, b = 22.147(4) A, c = 6.345(1) A, V = 1000.0(3) A(3), R1 for F(o) > 4sigma(F(o)) = 0.033, wR2 = 0.085. Tb (3): a = 7.090(2) A, b = 22.140(4) A, c = 6.325(2) A, V = 992.8(3) A(3), R1 for F(o) > 4sigma(F(o)) = 0.025, wR2 = 0.061. Crystal data for infinity (3)[Y2Cl6(1,4-Ph(CN)2)] (4): P1, T = 170(2) K; a = 6.653(2) A, b = 6.799(2) A, c = 9.484(2) A, V = 397.9(2) A(3), R1 for F(o) > 4sigma(F(o)) = 0.027, wR2 = 0.069. Crystal data for [Y2Cl6(PhCN)6] (5): P2(1)/c, T = 170(2) K; a = 9.767 (2) A, b = 12.304(3) A, c = 19.110(4) A, V = 2294.8(8) A(3), R1 for F(o) > 4sigma(F(o)) = 0.041, wR2 = 0.092.  相似文献   

9.
<正> Ln(o-ClC6H4CO2)3 (H2O) (Ln = Tb,Nb) ,Mr = 643. 62[628. 89]**, monoclinic,space group P21/n,a=12. 360(2)[12. 373(5)],b=6. 908(0)[7. 021(2)], c = 25. 936(6) [26. 086(9)] A ,β= 101. 30(2) [101. 71 (3)]°,Z= 4,V = 2171. 5(6) [2219(1)] A3,Dc=1. 97[1. 88]g·cm-3,μ= 37. 5[27. 5]em-1 (MoKa) ,F(000) = 1248[1228]. The two compounds are isomorphous,they show infinite chain structure.  相似文献   

10.
1 INTRODUCTION Polyoxometalates, a rich and remarkable classof inorganic cluster system[1], exhibit diverse appli-cation possibilities due to their topological and elec-tronic properties, ranging from their well-known roleas reagents in analytical, b…  相似文献   

11.
An unprecedented Nd[2,6-[[2,6-(i-Pr)(2)C(6)H(5)]N=C(CH(3))](2)(C(5)H(3)N)]NdI(2)(THF) (1) complex was prepared by oxidizing metallic Nd with I(2) in THF and in the presence of 2,6-[[2,6-(i-Pr)(2)C(6)H(5)]N=C(CH(3))](2)(C(5)H(3)N). The magnetic behavior at variable T clearly indicated that the complex should be regarded as a trivalent Nd atom antiferromagnetically coupled to a radical anion. By using the doubly deprotonated form of the diimino pyridine ligand [[2,6-[[2,6-(i-Pr)(2)C(6)H(5)]N-C=CH(2)](2)(C(5)H(3)N)](2-) (2) the corresponding trivalent complexes [[2,6-[[2,6-(i-Pr)(2)C(6)H(5)]N-C=CH(2)](2)(C(5)H(3)N)]Ln (THF)](mu-Cl)(2)[Li(THF)(2)].0.5 (hexane) [Ln = Nd (3), La (4)] were obtained and characterized. Reduction of these species afforded electron transfer to the ligand system which gave ligand dimerization via C-C bond formation through one of the two ene-amido functions of each molecule. The resulting dinuclear [[([2,6-(i-Pr)(2)C(6)H(5)]N-C=(CH(2)))(C(5)H(3)N)([2,6-(i-Pr)(2)C(6)H(5)]N=CCH(2))]Ln(THF)(2)(mu-Cl)[Li(THF)(3)])(2).2(THF) [Ln = Nd (5), La (6)] were isolated and characterized.  相似文献   

12.
(C5H4SiMe2tBu)2LnnBu reacted with 1 equiv. of elemental sulfur in toluene at ambient temperature to yield the corresponding lanthanocene thiolates [(C5H4SiMe2tBu)2Ln(m-SnBu)]2 (Ln = Y (1), Er (2)). Complexes 1 and 2 have been characterized by elemental analysis, IR, mass spectros- copy and X-ray single-crystal diffraction analysis. Both complexes are of monoclinic with space group P21/c, formula C52H94S2Si4Y2 1 (C52H94S2Si4Er2 2) Mr = 1073.57 (1230.27), a = 8.495(2) (8.41(2)), b = 26.913(8) (26.67(7)), c = 13.756(4) (13.68(4)) (A), α = 90(90), β = 101.184(5) (101.57(4)), γ = 90 (90)°, V = 3085.1(15) (3007(14))(A)3, Dc = 1.156 (1.359) g·cm-3, Z = 2 (2), F(000) = 1144 (1260), μ = 2.046 (2.951) cm-1, R = 0.0687 (0.0749) and wR = 0.1306 (0.1507) for observed reflections with I > 2σ(I). X-ray structures of 1 and 2 definitively prove that only one sulfur atom is inserted into the Ln-C(nBu) bond, forming a thiolate ligand.  相似文献   

13.
Cong R  Sun J  Yang T  Li M  Liao F  Wang Y  Lin J 《Inorganic chemistry》2011,50(11):5098-5104
Two new bismuth hydroxyl borates, Bi(2)O(2)[B(3)O(5)(OH)] (I) and Bi(2)O(2)[BO(2)(OH)] (II), have been synthesized under hydrothermal conditions. Their structures were determined by single-crystal and powder X-ray diffraction data, respectively. Compound I crystallizes in the orthorhombic space group Pbca with the lattice constants of a = 6.0268(3) ?, b = 11.3635(6) ?, and c = 19.348(1) ?. Compound II crystallizes in the monoclinic space group Cm with the lattice constants of a = 5.4676(6) ?, b = 14.6643(5) ?, c = 3.9058(1) ?, and β = 135.587(6)°. The borate fundamental building block (FBB) in I is a three-ring unit [B(3)O(6)(OH)](4-), which connects one by one via sharing corners, forming an infinite zigzag chain along the a direction. The borate chains are further linked by hydrogen bonds, showing as a borate layer within the ab plane. The FBB in II is an isolated [BO(2)(OH)](2-) triangle, which links to two neighboring FBBs by strong hydrogen bonds, resulting in a borate chain along the a direction. Both compounds contain [Bi(2)O(2)](2+) layers, and the [Bi(2)O(2)](2+) layers combine with the corresponding borate layers alternatively, forming the whole structures. These two new bismuth borates are the first ones containing [Bi(2)O(2)](2+) layers in borates. The appearance of Bi(2)O(2)[BO(2)(OH)] (II) completes the series of compounds Bi(2)O(2)[BO(2)(OH)], Bi(2)O(2)CO(3), and Bi(2)O(2)[NO(3)(OH)] and the formation of Bi(2)O(2)[B(3)O(5)(OH)] provides another example in demonstrating the polymerization tendency of borate groups.  相似文献   

14.
Kui SC  Li HW  Lee HK 《Inorganic chemistry》2003,42(9):2824-2826
Homoleptic Ce(III) and Nd(III) triamides [LnL(3)] [Ln = Ce(1) or Nd(2)] and the heterobimetallic amide-alkoxide derivatives [LnL(2)(mu-OBu(t))2M(tmeda)] [Ln = Ce, M = Na (3); Ln = Nd, M = Na (4); Ln = Nd, M = K (5)] supported by the bulky [N(SiBu(t)Me2)(2-C(5)H(3)N-6-Me)]- ligand (L-) have been successfully synthesized and characterized. Complexes 1-3 and 5 show a high activity toward the ring-opening polymerization of epsilon-caprolactone.  相似文献   

15.
Ln(SePh)(3) (Ln = Ce, Pr, Nd) reacts with elemental Se in the presence of Na ions to give (py)(16)Ln(17)NaSe(18)(SePh)(16), a spherical cluster with a 1 nm diameter. All three rare-earth metals form isostructural products. The molecular structure contains a central Ln ion surrounded by eight five-coordinate Se(2-) that are then surrounded by a group of 16 Ln that define the cluster surface, with additional μ(3) and μ(5) Se(2-), μ(3) and μ(4) SePh(-), and pyridine donors saturating the vacant coordination sites of the surface Ln, and a Na ion coordinating to selenolates, a selenido, and pyridine ligands. NIR emission studies of the Nd compound reveal that this material has a 35% quantum efficiency, with four transitions from the excited state (4)F(3/2) ion to (4)I(9/2), (4)I(11/2), (4)I(13/2), and (4)I(15/2) states clearly evident. The presence of Na(+) is key to the formation of these larger clusters, where reactions using identical concentrations of Nd(SePh)(3) and Se with either Li or K led only to the isolation of (py)(8)Nd(8)Se(6)(SePh)(12).  相似文献   

16.
The compounds (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y, Tb, Yb, and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), with Ln = La, Sm, Eu, were obtained by reactions of the group 3 metals yttrium and lanthanum as well as the lanthanides europium, samarium, terbium, and ytterbium with 2-(2-pyridyl)-benzimidazole. The reactions were carried out in melts of the amine without any solvent and led to two new groups of homoleptic rare earth pyridylbenzimidazolates. The trivalent rare earth atoms have an eightfold nitrogen coordination of four chelating pyridylbenzimidazolates giving an ionic structure with either pyridylbenzimidazolium or [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)](+) counterions. With Y, Eu, Sm, and Yb, single crystals were obtained whereas the La- and Tb-containing compounds were identified by powder methods. The products were investigated by X-ray single crystal or powder diffraction and MIR and far-IR spectroscopy, and with DTA/TG regarding their thermal behavior. They are another good proof of the value of solid-state reaction methods for the formation of homoleptic pnicogenides of the lanthanides. Despite their difference in the chemical formula, both types (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y (1), Tb (2), Yb (3), and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), Ln = La (4), Sm (5), Eu (6), crystallize isotypic in the tetragonal space group I4(1). Crystal data for (1): T = 170(2) K, a = 1684.9(1) pm, c = 3735.0(3) pm, V = 10603.5(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.053, wR2 = 0.113. Crystal data for (3): T = 170(2) K, a = 1683.03(7) pm, c = 3724.3(2) pm, V = 10549.4(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.047, wR2 = 0.129. Crystal data for (5): T = 103(2) K, a = 1690.1(2) pm, c = 3759.5(4) pm, V = 10739(2) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.050, wR2 = 0.117. Crystal data for (6): T = 170(2) K, a = 1685.89(9) pm, c = 3760.0(3) pm, V = 10686.9(11) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.060, wR2 = 0.144.  相似文献   

17.
Just O  Rees WS 《Inorganic chemistry》2001,40(8):1751-1755
Anhydrous lanthanide(III) chlorides (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) react with 3 equiv of lithium 2,2,5,5-tetramethyl-2,5-disila-1-azacyclopentanide, Li[N[Si(CH3)2CH2Ch2Si(CH3)2]], in THF or Et(2)O to afford the monomeric four-coordinate heteroleptic ate complexes Ln[N[Si(CH3)2CH2CH2Si(CH3)2]]3(mu-Cl)Li(THF/Et2O)3 (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6), Er (7), Tm (8), Yb (9)), whose solid-state structures were determined by the single-crystal X-ray diffraction technique. All complexes additionally were characterized by melting point determination, elemental analyses, and mass spectrometry.  相似文献   

18.
One-dimensional La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers were fabricated by a simple and cost-effective electrospinning method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and low voltage cathodoluminescence (CL) as well as kinetic decay were used to characterize the resulting samples. SEM and TEM results indicated that the diameter of the microfibers annealed at 1000 °C for 3 h was 200-245 nm. The microfibers were further composed of fine and closely linked nanoparticles. La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors showed the characteristic emission of Ce(3+) (5d → 4f), Eu(3+) ((5)D(0)→(7)F(J)) and Tb(3+) ((5)D(3,4)→(7)F(J)) under ultraviolet excitation and low-voltage electron beams (3-5 kV) excitation. An energy transfer from Ce(3+) to Tb(3+) was observed in the La(9.33)(SiO(4))(6)O(2): Ce(3+), Tb(3+) phosphor under ultraviolet excitation and low-voltage electron beam excitation. Luminescence mechanisms were proposed to explain the observed phenomena. Blue, red and green emission can be realized in La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers by changing the doping ions. So the La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors have potential applications in full-color field emission displays.  相似文献   

19.
The synthesis and characterization of a series of neo-pentoxide (OCH2C(CH3)3 or ONep) derivatives of group 3 and the lanthanide (Ln) series' metals were undertaken via an amide/alcohol exchange route. Surprisingly, the products isolated and characterized by single-crystal X-ray diffraction yielded isostructural species for every trivalent cation studied: [Ln(mu-ONep)2(ONep)]4 [Ln=Sc (1), Y (2), La (3), Ce (4), Pr (5), Nd (6), Sm (7), Eu (8), Gd (9), Tb (10), Dy (11), Ho (12), Er (13), Tm (14), Yb (15), Lu (16)]. Compounds 3, 4, 6, and 11 have been previously reported. Within this series of complexes, the Ln metal centers are oriented in a square with each Ln-Ln edge interconnected via two mu-ONep ligands; each metal center also binds one terminal ONep ligand. NMR data of 1-3 indicate that the solid-state structure is retained in solution. FTIR spectroscopy (KBr pellet) revealed the presence of significant Ln---H-C interactions within one set of the bridging ONep ligands in all cases; the stretching frequencies of these C-H bonds appear to increase in magnitude with decrease in metal ion radius. These complexes were used to generate nanoparticles through solution hydrolysis routes, resulting in the formation of lanthanide oxide nanoparticles and rods. The emission properties of these ceramics were preliminarily investigated using UV-vis and PL measurements.  相似文献   

20.
Five kinds of molybdovanadophosphoric acid: H7[P2Mo17VO62], H8[P2Mo16V2O62], H9[P2Mo15V3O62], H8[P2Mo14V4O61(H2O)] and H9[P2Mo13V5O61(H2O)] have been synthesized. The salts, K13[Ln(SiW11O39)2] (Ln=La, Ce, Pr, Nd or Gd) have also been prepared. The proton conductivities (C) of all the above compounds have been measured, and are dependent not only on the nature of compound itself, but also on external factors such as temperature and frequency. The general trend of proton conductivity, changing with the hydration number, frequency and temperature is summarized and important conclusions have been drawn based on experimental measurements. The resulting data have not been reported hitherto in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号