首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Optical and electron paramagnetic resonance study have been carried out on BaY2F8 single crystals doped with Yb ions at 0.5 and 10 mol%. The crystals have been obtained using the Czochralski method modified for fluoride crystal growth. Optical transmission measurements in the range of 190-3200 nm and photoluminescence measurements were carried out at room temperature. Absorption spectra of BaY2F8 single crystals doped with Yb due to the 2F7/22F5/2 transitions have been observed in the 930-980 nm range. To analyze the possible presence of Yb2+ ions in the investigated crystals, irradiation with γ-quanta with a dose of 105 Gy have been performed. The observed photoluminescence bands show usual emission in IR and other one in VIS, being an effect of cooperative emission of Yb3+ ions and energy up-conversion transitions of photons from IR to UV-vis(visible) due to hoping process between energy levels of paired Yb3+ and Er3+, where Er3+ ions are unintentional dopants. The EPR spectra of BaY2F8:Yb 10 mol% consist of many overlapping lines. They have been analyzed in terms of spin monomers, pairs, and clusters. The angular dependence of the resonance lines positions have been studied also to find the location of coupled ytterbium ions in the crystal structure.  相似文献   

2.
A spinel sulphide CuIr2S4 single crystal, which exhibits an orbitally induced Peierls phase transition at ~230?K, is investigated by electron spin resonance (ESR) spectroscopy. The phase transition is clearly manifested on the ESR spectra. It is suggested that the ESR signals are produced by a few non-dimerized Ir4+ ions. Moreover, an extra ESR spectrum appears at low temperature in addition to the paramagnetic ESR signals of Ir4+ ions, which is suggested to be caused by the Jahn–Teller effect of the non-dimerized Ir4+ ions. From the ESR results, it is found that the Jahn–Teller splitting energy ΔE JT is much smaller than the spin-dimerization gap.  相似文献   

3.
We have examined the magnetic properties of the heavy electron compounds YbAgGe and YbPtIn by 170Yb M?ssbauer spectroscopy down to 0.1 K, and the crystal field properties of YbAgGe by Perturbed Angular Correlations (PAC) measurements up to 900 K. In YbAgGe, we show that each of the two magnetically ordered phases below 0.8 K involves a specific incommensurate modulation of the Yb moment. An analysis of existing low temperature specific heat data suggests the persistence of fluctuations of the correlated Yb spins down to 0.1 K. The PAC data allow to discriminate among proposed Yb3+ crystal field level schemes. In YbPtIn, we show that the low temperature magnetic order phase has an antiferro-para structure, where zero moment Yb ions coexist with large moment ones, and that a 90° moment reorientation occurs at 1.4 K.  相似文献   

4.
The electron paramagnetic resonance (EPR) of Yb3+ ions in a KY(WO4)2 single crystal was investigated at T=4.2 K and fixed frequency of 9.38 GHz. The resonance absorption observed on the lowest Kramers doublet represents the complex superposition of three spectra, corresponding to the ytterbium isotopes with different nuclear moments. The EPR spectrum is characterized by a strong anisotropy of the g-factors. The temperature dependence of the g-factors is shown to be caused by the strong spin-orbital and orbital-lattice coupling. The resonance lines broaden with increasing temperature due to the short spin-lattice relaxation times.  相似文献   

5.
Single crystal of La3Ga5.5Ta0.5O14 (LGT) containing intentionally 0.5 % of Ho3+ and 1 % of Yb3+ was grown by the Czochralski method. Examination of chemical composition of the grown crystal revealed that luminescent holmium and ytterbium ions are preferably retained in the melt and their actual concentrations are 0.12 and 0.24 %, respectively. Spectroscopic investigation performed encompassed IR host absorption spectra and Raman spectra at room temperature, optical absorption and luminescence spectra of Ho3+ and Yb3+ at room temperature and at 5 K, and luminescence decay curves at room temperature. It was found that all spectral bands recorded show important inhomogeneous line broadening. This feature was attributed to structural disorder inherent to the crystal lattice in which pentavalent Ta5+ ions occupy octahedral Ga(1) sites together with trivalent Ga3+ ions. Despite small concentrations of luminescent ions, the occurrence of nonradiative interaction that feeds the 5I6 and 5I7 levels of Ho3+ ions by transfer of an excitation from the 2F5/2 level of Yb3+ ions was evidenced. Based on examination of spectroscopic parameters evaluated, it was concluded that LGT:Ho, Yb may be considered as a potential intermediate-gain laser active material able to emit infrared radiation from the 5I7 → 5I8 transition of Ho3+ around 2 micrometres upon laser-diode pumping into Yb3+ absorption band.  相似文献   

6.
GdVO4 single crystal co-doped with Yb3+ and Er3+ was grown by the Czochralski method. The X-ray powder diffraction pattern of Yb,Er:GdVO4 crystal confirms that the as-grown crystal is isostructural with pure GdVO4 crystal. Its polarized absorption spectra and non-polarized fluorescence spectra were measured at room temperature. The absorption band at 984 nm for π-polarization has an FWHM of about 36 nm, which is favorable for InGaAs LD laser pumping. The spectrum properties of Er3+ in Yb,Er:GdVO4 crystal were investigated based on Judd–Ofelt theory. There is strong energy transfer from Yb3+ to Er3+ in this crystal. When excited with 980 nm radiation, this crystal emitted strong fluorescence at about 1529 nm and 552.5 nm. The total energy transfer rate and efficiency from Yb3+ to Er3+ is 3.33 ms-1 and 67%, respectively. The energy transfer between Er3+ and Yb3+ ions is a multistep transfer process, and was investigated based on a random-walk model. The investigation result shows that there is strong cooperative-sensitization effect from Yb3+ to Er3+, which is the main upconversion energy-transfer process in this crystal. PACS 42.70.Hj; 81.10.Fq; 42.55.Rz  相似文献   

7.
Y. Cheng  X. D. Xu  X. B. Yang  Z. Xin  D. H. Cao  J. Xu 《Laser Physics》2009,19(11):2133-2139
Laser crystal Yb3+-doped NaY(WO4)2 (Yb:NYW) with excellent quality has been grown by Czochralski technique. The rocking curves from (400) plane of as-grown Yb:NYW crystal was measured and the full-width value at half-maximum was 19.92″. The effective segregation coefficients were measured by the X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Yb:NYW crystal were measured at room temperature. The fluorescence decay lifetime of Yb3+ ion in NYW crystal has been investigated. The spectroscopic parameters of Yb:NYW crystal are calculated and compared with those of Yb:YAG crystal. A continuous wave output power of 3.06 W at 1031 nm was obtained with a slope efficiency of 42% by use of diode pumping.  相似文献   

8.
The electron paramagnetic resonance (EPR) studies of LiNbO3 single crystal doped with 1 wt% of Yb3+ are reported. To put the EPR results in perspective, a brief discussion of optical absorption spectroscopy investigations of LiNbO3:Yb3+ is provided. The temperature behavior of the EPR lines intensity and linewidth for LiNbO3:Yb3+ reveals antiferromagnetic coupling between Yb3+ ions. The deconvolution of the EPR lines indicates that EPR signals arise from both the isolated Yb3+ ions as well as the Yb3+-Yb3+ ion pairs; the latter signals dominate. Based on this indication, EPR spectra are interpreted using a spin Hamiltonian for the Yb3+ dissimilar ion pairs. The negative sign of the isotropic parameter J confirms the existence of the antiferromagnetic interactions within Yb3+-Yb3+ pairs. The value of J obtained based on the proposed pair model, assuming the dipole-dipole interactions, is used to identify the positions of the Yb3+-Yb3+ pairs in the unit cell. Our results suggest the evenYb3+-evenYb3+ pairs are located at the neighboring Li+ and Nb5+ positions, whereas the pair axis is not parallel to the optical c-axis. Some alternative explanations of the observed EPR spectra are also considered.  相似文献   

9.
The parameters of the crystal field of the tetragonal oxygen center associated with a Yb3+ ion in the KMgF3 crystal found previously in a study of optical and ESR spectra are applied to analyze lattice distortions in the vicinity of the impurity ion and the O2? ion compensating for the excess positive charge. Within the superposition model, it was ascertained that the Yb3+ ion and the neighboring ions of fluorine and oxygen on the axis of the center shift significantly along the direction from the O2? ion to the Yb3+ ion during the formation of the tetragonal oxygen center. As this takes place, the distances of both (fluorine and oxygen) ions from the impurity ion increase. The four F? ions of the nearest octahedral neighborhood of Yb3+ that are arranged symmetrically in the plane perpendicular to the axis of the center slightly recede from the axis.  相似文献   

10.
We present results of PAC measurements in heavy-fermion compound Yb4As3. The quadrupole hyperfine interaction has been investigated over the temperature range 78–850 K. The interpretation of the experimental data yields a microscopic proof of the existence of a charge-ordered state with periodic arrangement of Yb2+ and Yb3+ ions in the low temperature phase. In the high temperature phase all Yb ions are in a valence fluctuating state.  相似文献   

11.
We have examined the fluorescence characteristics of the garnet-type crystal Yb3Al5O12 : Er3+ (YbAlG : Er3+) and studied the energy transfer process between the two rare earth ions over a temperature range 78–297 K. Certain data were compared with those of YAlG : Er3+. In YbAlG : Er3+, Yb fluorescence is observed at ?1.03 μm (corresponding to the 2F5/22F7/2 transition); Er fluorescence occurs at ?8500 Å (4S3/24I13/2 transition) and ?1.6 μm (4I13/24I15/2 transition). In YAlG : Er3+, the same Er lines are observed with the addition of a band at ?1 μ (4I11/24I15/2 transition). In YbAlG : Er3+, the decay pattern of the Yb emission is purely exponential at all the temperatures examined; the fluorescence lifetime ranges from 36 μ s (at 78 K) to 74 μs(at 269 K). The lifetime of the Er4I13/2 level in the same sample increases from 5.4 ms (at 78 K) to 6.85 ms (at 294 K). The lifetime of this Er level in YAlG : Er3+ is weakly temperature dependent over the same range with a value of ?12 ms. Excitation spectra were obtained for the Er 1.53 μm fluorescence in YbAlG : Er3+ in order to verify the presence of Yb → Er energy transfer in this sample. The presence of the Yb absorption band (?1 μm) in these spectra provides direct evidence of this energy transfer. The relative enhancement of this Yb band with respect to the Er bands in going from 78 K to 175 K is an indication of a more efficient transfer at the higher temperature. Excitation spectra obtained for the Yb 1.03 μm fluorescence in YbAlG : Er3+ revealed the presence of Er → Yb energy transfer as well in this sample. The existence of both Yb → Er and Er → Yb transfer is expected, due to the resonance between the 4I11/24I15/2 transition of Er and the 2F5/22F7/2 transition of Yb. The above results are explained in terms of a rate equation model in which transfer in both directions is treated in the following manner: Yb → Er transfer is considered to be much more probable than decay processes originating at the Yb 2F5/2 level; Er → Yb transfer is treated as much more probable than decay processes originating at the Er 4I11/2 level.  相似文献   

12.
An Er:Yb:Sr3Gd2(BO3)4 crystal was grown by the Czochralski method. The polarized spectral properties of the crystal were investigated, including the polarized absorption and fluorescence spectra and fluorescence decay. The fluorescence quantum efficiency of the upper laser level 4I13/2 of Er3+ ions and the efficiency of the energy transfer from Yb3+ to Er3+ ions were calculated. End-pumped by a diode laser at 970 nm in a hemispherical cavity, a 1.6 W quasi-cw laser at 1.5–1.6 μm with a slope efficiency of 18% and an absorbed pump threshold of 5.9 W was achieved in a 1.8-mm-thick Z-cut Er:Yb:Sr3Gd2(BO3)4 crystal. This crystal has a flat and broad gain curve at 1.5–1.6 μm and so is also a potential gain medium for tunable and short pulse lasers.  相似文献   

13.
When growing CaF2 crystal doped with rare-earth ions, most of these ions are present in a trivalent state. However, due to contact with graphite crucible, a small proportion of a number of ions (Eu, Sm, Yb and Tm) are reduced to a bivalent state. A similar situation takes place during fabrication of CaF2 ceramics doped with rare-earth metals. This fact is of particular importance for laser CaF2:Yb crystals (ceramics), a promising material for short-pulse, high-power, high-energy diode-pumped solid state lasers since the presence of bivalent Yb ions can be a source of thermal losses. To date, there has been no technique to determine Yb2+ concentration in as-grown crystals. The proposed technique is based on a total reduction of Yb3+ ions via the heating of as-grown CaF2 crystals with known concentration of Yb in the reducing atmosphere of metal vapour and determining the cross section of absorption bands of Yb2+ ions. The knowledge of these parameters allows estimation of the Yb2+ content in CaF2:Yb crystals or ceramics by analysing their absorption spectra. Examples of using this technique are given. The technology of CdF2 crystals reduction (an “additive colouring”) and features of colouring of crystals doped with rare-earth ions are considered.  相似文献   

14.
The Ca12Al14O33: Yb3+/Yb2+ single phase nano-phosphor has been synthesized through combustion route and its luminescence and lifetime studies have been carried out up to 20 K using 976 and 266 nm excitations. The samples heated in open atmosphere have shown the presence of Yb in Yb3+ and Yb2+ states. The 976 nm excitation results a cooperative upconversion emission at 486 nm due to the Yb3+ state and a broad band in the blue region and has been assigned to arise from the defect centers. The 266 nm excitation on the other hand results a broad emission band even from as-synthesized phosphor without doping of Yb, the width of which increases in presence of Yb due to the emission from Yb2+ ions formed in heated samples. The white emission covers almost whole visible region with bandwidth 190 nm. The ions in Yb2+ state has been found to increase with the increase in heating temperature up to 1,273 K. A back conversion of Yb2+ to Yb3+ has been observed for higher temperatures. Effect of boric and phosphoric acids as flux on the emission properties of Yb3+ and Yb2+ states have been examined and discussed. Quantum yield of emission has also been determined for different samples.  相似文献   

15.
Yb3+-doped NaGd(WO4)2 (Yb:NGW) crystal has been successfully grown by Czochralski method. The rocking curves from (400) plane of as-grown Yb:NGW crystal was measured and the full-width values at half-maximum was 21″. The polarized absorption spectra, the fluorescence spectra and the fluorescence decay lifetime of Yb:NGW crystal were measured at room temperature. The spectroscopic parameters of Yb:NGW crystal are calculated and compared, with those of Yb:YAG crystal. A continuous wave output power of 3.01 W at 1048 nm was obtained with a slope efficiency of 71% by use of diode pumping.  相似文献   

16.
A new Yb-doped oxyorthosilicate laser crystal, Yb:Gd2SiO5 (Yb:GSO), has been grown by the Czochralski (Cz) method. The crystal structure was determined by means of X-ray diffraction analysis. Room temperature absorption and fluorescence spectra of Yb3+ ions in GSO crystal were measured. Then, spectroscopic parameters of Yb:GSO were calculated and compared with those of another Yb-doped oxyorthosilicate crystal Yb:YSO. Results indicated that Yb:GSO crystal seemed to be a very promising laser gain media in generating ultra-pulses and tunable solid state laser applications. As expected, the output power of 2.72 W at 1089 nm was achieved in Yb:GSO crystal with absorbed power of only 4.22 W at 976 nm, corresponding to the slope efficiency of 71.2% through the preliminary laser experiment.  相似文献   

17.
The spin-spin interaction of Dy3+ ions in a KY(WO4)2 single crystal is investigated by electron paramagnetic resonance (EPR) spectroscopy at a temperature of 4.2 K and a frequency of 9.2 GHz. The EPR spectra of ion pairs located in different coordination shells are analyzed. It is revealed that the considerable contribution to the spin-spin interaction of the nearest neighbor ion pair nn is made not only by the magnetic dipole-dipole interaction but also by the isotropic exchange interaction with the parameter I nn = (+601 ± 17) × 10?4cm?1. The exchange interaction in pairs of more widely spaced ions is substantially weaker: I 5n = (?38 ± 3) × 10?4cm?1 and I 9n = (+18 ± 4) × 10?4cm?1. For the other ion pairs, the magnetic dipole-dipole interaction dominates. It is found that the EPR spectra of single ions and ion pairs exhibit a superhyperfine structure associated with tungsten nuclei.  相似文献   

18.
Yb3+-doped La2(WO4)3 single crystals were grown by the Czochralski technique. Absorption and fluorescence spectra of the crystal were recorded at the room temperature. The stimulated emission cross-sections of Yb3+ ions were calculated using the reciprocity method and Fuchtbauer-Ladenburg formula, respectively. The fluorescence decay curves of 2F5/2 manifold of Yb3+ ions were recorded at room temperature for both crystal and powder samples. The effect of radiation trapping on the spectroscopic properties is discussed. Comparison with other Yb3+-doped laser crystals is made. The results show that Yb3+:La2(WO4)3 crystal is a promising laser material.  相似文献   

19.
Structural, electrical and magnetic measurements, as well as electron spin resonance (ESR) spectra, were used to characterise the single-crystalline CuCr1.6V0.4Se4 spinel and study the correlation between the negative magnetoresistance effect and magnon excitations. We established the ferromagnetic order below the Curie temperature T C ≈ 193 K, a p-type semiconducting behaviour, the ESR change from paramagnetic to ferromagnetic resonance at T C, a large ESR linewidth value and its temperature dependence in the paramagnetic region. Electrical studies revealed negative magnetoresistance, which can be enhanced with increasing magnetic field and decreasing temperature, while a detailed thermopower analysis showed magnon excitations at low temperatures. Spin–phonon coupling is explained within the framework of a complex model of paramagnetic relaxation processes as a several-stage relaxation process in which the V3+ ions, the exchange subsystem and conduction electron subsystem act as the intermediate reservoirs.  相似文献   

20.
CaF2 crystals doped with Yb3+ ions have been studied by electron paramagnetic resonance (EPR) and optical spectroscopy. EPR spectra of paramagnetic centers (PCs) for cubic (Tc) and tetragonal (Ttet) symmetries were identified. Empirical energy level diagrams were established and crystal field parameters were determined. Information on the CaF2∶Yb3+ phonon spectra was obtained from the electron-vibrational structure of the optical spectra. The crystal field parameters were used to analyze the crystal lattice distortions in the vicinity of the Yb3+ ion. Within the framework of a superposition model, it is established that four F ions located symmetrically with respect to the fourfold axis from the side of the ion-compensator approach the impurity ion and deviate from the PC axis. The second set of four fluorine ions also approaches the Yb3+ ion and the PC axis. The ion-compensator F also approaches considerably the impurity ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号