首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lanthanum dimer (La(2)) was studied by mass-analyzed threshold ionization (MATI) spectroscopy and a series of multi-configuration ab initio calculations. The MATI spectrum exhibits three band systems originating from ionization of the neutral ground electronic state, and each system shows vibrational frequencies of the neutral molecule and singly charged cation. The three ionization processes are La(2)(+) (a(2)∑(g)(+)) ← La(2) (X(1)∑(g)(+)), La(2)(+) (b(2)Π(3/2, u)) ← La(2) (X(1)∑(g)(+)), and La(2)(+) (b(2)Π(1/2, u)) ← La(2) (X(1)∑(g)(+)), with the ionization energies of 39,046, 40,314, and 40,864 cm(-1), respectively. The vibrational frequency of the X(1)Σ(g)(+) state is 207 cm(-1), and those of the a(2)Σ(g)(+), b(2)Π(3/2, u) and b(2)Π(1/2, u) are 235.7, 242.2, and 240 cm(-1). While X(1)Σ(g)(+) is the ground state of the neutral molecule, a(2)Σ(g (+) and b(2)Π(u) are calculated to be the excited states of the cation. The spin-orbit splitting in the b(2)Π(u) ion is 550 cm(-1). An X(4)Σ(g)(-) state of La(2)(+) was predicted by theory, but not observed by the experiment. The determination of a singlet ground state of La(2) shows that lanthanum behaves differently from scandium and yttrium.  相似文献   

2.
Sector-field mass spectrometry is used to probe the fragmentation patterns of cationic dinuclear iron chloride clusters Fe(2)Cl(n)()(+) (n = 1-6). For the chlorine-rich, high-valent Fe(2)Cl(n)()(+) ions (n = 4-6), losses of atomic and molecular chlorine prevail in the unimolecular and collision-induced dissociation patterns. Instead, the chlorine deficient, formally low-valent Fe(2)Cl(n)()(+) clusters (n = 1-3) preferentially undergo unimolecular degradation to mononuclear FeCl(m)()(+) ions. In addition, photoionization is used to determine IE(Fe(2)Cl(6)) = 10.85 +/- 0.05 eV along with appearance energy measurements for the production of Fe(2)Cl(5)(+) and Fe(2)Cl(4)(+) cations from iron(III) chloride vapor. The combination of the experimental results allows an evaluation of some of the thermochemical properties of the dinuclear Fe(2)Cl(n)()(+) cations: e.g., Delta(f)H(Fe(2)Cl(+)) = 232 +/- 15 kcal/mol, Delta(f)H(Fe(2)Cl(2)(+)) = 167 +/- 4 kcal/mol, Delta(f)H(Fe(2)Cl(3)(+)) = 139 +/- 4 kcal/mol, Delta(f)H(Fe(2)Cl(4)(+)) = 113 +/- 4 kcal/mol, Delta(f)H(Fe(2)Cl(5)(+)) = 79 +/- 5 kcal/mol, and Delta(f)H(Fe(2)Cl(6)(+)) = 93 +/- 2 kcal/mol. The analysis of the data suggests that structural effects are more important than the formal valency of iron as far as the Fe-Cl bond strengths in the Fe(2)Cl(n)()(+) ions are concerned.  相似文献   

3.
The kinetics of reactions of C2(a(3)Pi(u)) and C2(X(1)Sigma(g)(+)) with various hydrocarbons (CH4, C2H2, C2H4, C2H6, and C3H8) have been studied in a uniform supersonic flow expansion over the temperature range 24-300 K. Rate coefficients have been obtained by using the pulsed laser photolysis-laser induced fluorescence technique, where both radicals were produced at the same time but detected separately. The reactivity of the triplet state was found to be significantly lower than that of the singlet ground state for all reactants over the whole temperature range of the study. Whereas C2(X(1)Sigma(g)(+)) reacts with a rate coefficient close to the gas kinetic limit with all hydrocarbons studied apart from CH4, C2(a(3)Pi(u)) appears to be more sensitive to the molecular and electronic structure of the reactant partners. The latter reacts at least one order of magnitude faster with unsaturated hydrocarbons than with alkanes, and the rate coefficients increase very significantly with the size of the alkane. Results are briefly discussed in terms of their potential astrophysical impact.  相似文献   

4.
Vacuum ultraviolet photoionization of C3   总被引:1,自引:0,他引:1  
Photoionization efficiency (PIE) curves for C(3) molecules produced by laser ablation are measured from 11.0 to 13.5 eV with tunable vacuum ultraviolet undulator radiation. A step in the PIE curve versus photon energy, obtained with N(2) as the carrier gas, supports the conclusion of very effective cooling of C(3) to its linear (1)Sigma(g)(+) ground state. The second step observed in the PIE curve versus photon energy could be the first experimental evidence of the C(3)(+)((2)Sigma(g)(+)) excited state. The experimental results, complemented by ab initio calculations, suggest a state-to-state vertical ionization energy of 11.70 +/- 0.05 eV between the C(3)(X(1)Sigma(g)(+)) and the C(3)(+)(X(2)Sigma(u)(+)) states. An ionization energy of 11.61 +/- 0.07 eV between the neutral and ionic ground states of C(3) is deduced using the data together with our calculations. Accurate ab initio calculations are performed for both linear and bent geometries on the lowest doublet electronic states of C(3)(+) using Configuration Interaction (CI) approaches and large basis sets. These calculations confirm that C(3)(+) is bent in its electronic ground state, which is separated by a small potential barrier from the (2)Sigma(u)(+) minimum. The gradual increase at the onset of the PIE curve suggests a geometry change between the ground neutral and cationic states. The energies between several doublet states of the ion are theoretically determined to be 0.81, 1.49, and 1.98 eV between the (2)Sigma(u)(+) and the (2)Sigma(g)(+),( 2)Pi(u), (2)Pi(g) excited states of C(3)(+), respectively.  相似文献   

5.
Mid-infrared photodissociation spectra of mass selected C(3)H(3)(+)-N(2) ionic complexes are obtained in the vicinity of the C-H stretch fundamentals (2970-3370 cm(-1)). The C(3)H(3)(+)-N(2) dimers are produced in an electron impact cluster ion source by supersonically expanding a gas mixture of allene, N(2), and Ar. Rovibrational analysis of the spectra demonstrates that (at least) two C(3)H(3)(+) isomers are produced in the employed ion source, namely the cyclopropenyl (c-C(3)H(3)(+)) and the propargyl (H(2)CCCH(+)) cations. This observation is the first spectroscopic detection of the important c-C(3)H(3)(+) ion in the gas phase. Both C(3)H(3)(+) cations form intermolecular proton bonds to the N(2) ligand with a linear -C-H...N-N configuration, leading to planar C(3)H(3)(+)-N(2) structures with C(2v) symmetry. The strongest absorption of the H(2)CCCH(+)-N(2) dimer in the spectral range investigated corresponds to the acetylenic C-H stretch fundamental (v(1) = 3139 cm(-1)), which experiences a large red shift upon N(2) complexation (Delta(v1) approximately -180 cm(-1)). For c-C(3)H(3)(+)-N(2), the strongly IR active degenerate antisymmetric stretch vibration (v4)) of c-C(3)H(3)(+) is split into two components upon complexation with N(2): v4)(a(1)) = 3094 cm(-1) and v4)(b(2)) = 3129 cm(-1). These values bracket the yet unknown v4) frequency of free c-C(3)H(3)(+) in the gas phase, which is estimated as 3125 +/- 4 cm(-1) by comparison with theoretical data. Analysis of the nuclear spin statistical weights and A rotational constants of H(2)CCCH(+)-N(2) and c-C(3)H(3)(+)-N(2) provide for the first time high-resolution spectroscopic evidence that H(2)CCCH(+) and c-C(3)H(3)(+) are planar ions with C(2v) and D(3h) symmetry, respectively. Ab initio calculations at the MP2(full)/6-311G(2df,2pd) level confirm the given assignments and predict intermolecular separations of R(e) = 2.1772 and 2.0916 A and binding energies of D(e) = 1227 and 1373 cm(-1) for the H-bound c-C(3)H(3)(+)-N(2) and H(2)CCCH(+)-N(2) dimers, respectively.  相似文献   

6.
The intrinsically multireference dissociation of the C-N bond in ground-state diazomethane (CH(2)N(2)) at different angles has been studied with the multireference Brillouin-Wigner coupled-cluster singles and doubles (MRBWCCSD) method. The morphology of the calculated potential energy surface (PES) in C(s)() symmetry is similar to a multireference perturbational (CASPT3) PES. The MRBWCCSD/cc-pVTZ H(2)C-N(2) dissociation energy with respect to the asymptotic CH(2)(?(1)A(1)) + N(2)(X(1)Sigma(g)(+)) products is D(e) = 35.9 kcal/mol, or a zero-point corrected D(0) = 21.4 kcal/mol with respect to the ground-state CH(2)(X(3)B(1)) + N(2)(X(1)Sigma(g)(+)) fragments.  相似文献   

7.
We study how the degree of fluorine substitution for hydrogen atoms in ethene affects its reactivity in the gas phase. The reactions of a series of small fluorocarbon cations (CF(+), CF(2)(+), CF(3)(+), and C(2)F(4)(+)) with ethene (C(2)H(4)), monofluoroethene (C(2)H(3)F), 1,1-difluoroethene (CH(2)CF(2)), and trifluoroethene (C(2)HF(3)) have been studied in a selected ion flow tube. Rate coefficients and product cations with their branching ratios were determined at 298 K. Because the recombination energy of CF(2)(+) exceeds the ionization energy of all four substituted ethenes, the reactions of this ion produce predominantly the products of nondissociative charge transfer. With their lower recombination energies, charge transfer in the reactions of CF(+), CF(3)(+), and C(2)F(4)(+) is always endothermic, so products can only be produced by reactions in which bonds form and break within a complex. The trends observed in the results of the reactions of CF(+) and CF(3)(+) may partially be explained by the changing value of the dipole moment of the three fluoroethenes, where the cation preferentially attacks the more nucleophilic part of the molecule. Reactions of CF(3)(+) and C(2)F(4)(+) are significantly slower than those of CF(+) and CF(2)(+), with adducts being formed with the former cations. The reactions of C(2)F(4)(+) with the four neutral titled molecules are complex, giving a range of products. All can be characterized by a common first step in the mechanism in which a four-carbon chain intermediate is formed. Thereafter, arrow-pushing mechanisms as used by organic chemists can explain a number of the different products. Using the stationary electron convention, an upper limit for Δ(f)H°(298)(C(3)F(2)H(3)(+), with structure CF(2)═CH-CH(2)(+)) of 628 kJ mol(-1) and a lower limit for Δ(f)H°(298)(C(2)F(2)H(+), with structure CF(2)═CH(+)) of 845 kJ mol(-1) are determined.  相似文献   

8.
We have performed high precision photoassociation spectroscopy of ultracold cesium gas. Using trap-loss fluorescence detection and controlling the background cesium pressure we were able to photoassociate atoms into excited states of ultracold molecules with large detunings up to 56 cm(-1) below the Cs(6S(1/2)) + Cs(6P(1/2)) atomic asymptote. Vibrational progressions are assigned to 0(g)(-), 0(u)(+), and 1(g) long-range states. By fitting the spectral data to the LeRoy-Bernstein expression, the effective coefficients of the leading long-range interactions and the vibrational quantum number at dissociation are obtained. In addition we have observed spectral perturbations between states of the same symmetry belonging to different asymptotes (6P(1/2) and 6P(3/2)). The perturbations are manifested through irregular vibrational level spacings and are especially pronounced in the 0(u)(+) symmetry. Many observed rotational levels indicate d- and higher partial wave contributions to the photoassociation cross section in the presence of trapping laser light, while spectral regions with only weak features suggest nodes in the lower state wave functions corresponding to the two ground state atoms asymptote.  相似文献   

9.
1,3,4,5-Tetramethylimidazol-2-ylidene (L(Me)) and 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (L(iPr )) readily form complexes of trans-TiF4(L(Me))2 (1) and of trans-TiF4(L(iPr))2 (4) with TiF4 in THF, respectively. Complex 1 has been used as a precursor for preparing the Ti(IV) fluoride carbene complexes [{TiF2(L(Me))(NEt 2)}2(mu-F)2] (2) and (TiF4(L(Me))2)(NacNacLi) (3) (NacNac = HC(CMeN(2,6- iPr2C6H3))2). Complex 2 was prepared from the reaction of 1-3 equiv of 1 and 1 equiv of Ti(NEt2)4 or by reacting TiF4 with Ti(NEt2)4 and L(Me) in toluene. Complex 3 has been prepared from 1 and NacNacLi in toluene. Reaction of 1 and AlMe3 in toluene results in ligand transfer and formation of AlMe3(L(Me)). Complex 4 is unstable in solution at room temperature and degrades with formation of [HL(iPr)][TiF5(L(iPr))] (5). Complexes 1, 2.2CH2Cl2, 4, and 5 were characterized by single crystal X-ray structural analysis, elemental analysis, IR and NMR spectroscopy, and mass spectrometry. The relative basicities of L(Me), L (iPr), and the donor ligands THF, pyridine, DMSO, and H2O as well as [Cl](-) and [F](-) toward the Ti(IV) pentafluoride anion were established by NMR and confirmed by density functional theory (DFT) calculations. L(Me) and L(iPr ) are more basic than the mentioned molecular donors and more basic than chloride, however less basic than fluoride.  相似文献   

10.
The nuclear spin dependence of the chemical reaction H(3)(+)+ H(2) → H(2)?+ H(3)(+) has been studied in a hollow cathode plasma cell. Multipass infrared direct absorption spectroscopy has been employed to monitor the populations of several low-energy rotational levels of ortho- and para-H(3)(+) (o-H(3)(+) and p-H(3)(+)) in hydrogenic plasmas of varying para-H(2) (p-H(2)) enrichment. The ratio of the rates of the proton hop (k(H)) and hydrogen exchange (k(E)) reactions α ≡ k(H)/k(E) is inferred from the observed p-H(3)(+) fraction as a function of p-H(2) fraction using steady-state chemical models. Measurements have been performed both in uncooled (T(kin) ~ 350 K) and in liquid-nitrogen-cooled (T(kin) ~ 135 K) plasmas, marking the first time this reaction has been studied at low temperature. The value of α has been found to decrease from 1.6 ± 0.1 at 350 K to 0.5 ± 0.1 at 135 K.  相似文献   

11.
The trifluoromethyl radical, CF(3)(●), is studied for the first time by means of threshold photoelectron spectroscopy (TPES). The radical is produced in the gas phase using the flash-pyrolysis technique from hexafluoroethane as a precursor. CF(3)(+) total ion yield and mass-selected TPES of the radical are recorded using a spectrometer based upon velocity map imaging and Wiley-McLaren time-of-flight coupled to the synchrotron radiation. The high resolution of the instrument and of the photons allows the observation of rich vibrational progressions in the TPES of CF(3)(●). By using Franck-Condon factors computed by Bowman and coworkers, we have been able to simulate the TPES. The initial vibrational temperature of the radical beam has been evaluated at 350 ± 70 K. The structures have been identified as transitions between (n(1),n(2)) and (n(1)(+),n(2)(+)) vibrational levels of CF(3) and CF(3)(+) with small excitation of the breathing mode, ν(1)(+) (,) and large excitation (n(2)(+) = 10-26) of the umbrella mode, ν(2)(+), in the cation. From the energy separation between the two resolved peaks of each band, a value of 994 ± 16 cm(-1) has been derived for the ν(1)(+) breathing frequency of CF(3)(+). For the high-lying n(2)(+) levels, the apparent ν(2)(+) umbrella spacing, 820 ± 14 cm(-1), is fairly constant. Taking into account the ν(2)(+) anharmonicity calculated by Bowman and coworkers, we have deduced ν(2)(+) = 809 ± 14 cm(-1), and semi-empirical estimations of the adiabatic ionization energy IE(ad.)(CF(3)(●)) are proposed in good agreement with most of previous works. A value of the vertical ionization potential, IE(vert.)(CF(3)(●)) = 11.02 eV, has been derived from the observation of a photoelectron spectrum recorded at a fixed photon energy of 12 eV.  相似文献   

12.
The mechanisms of the reactions between N(2)O and CO catalyzed by IrO(n)(+) (n = 1, 2) have been investigated using B3LYP and CCSD(T) levels of theory. Spin inversion among three reaction profiles corresponding to the quintet, triplet, and singlet multiplicities was discussed by using spin-orbit coupling (SOC) calculations. The probability of electron hopping in the vicinity of the (MECP) has been calculated by the Landau-Zener-type model. The single P(1)(ISC) and double P(2)(ISC) passes estimated at MECP1(#) (SOC = 198.61 cm(-1)) are approximately 0.11 and 0.20, respectively. Important analysis and explanations were done using molecular orbital theory and natural bonding orbital (NBO). The energetic span (δE) model coined by Kozuch was applied in this cycle. The turnover frequency (TOF)-determining transition state (TDTS) and TDI (TOF-determining intermediate) were confirmed. Finally, TOF(IrO(+))/TOF(IrO(2)(+)) = 0.38 at 298 K.  相似文献   

13.
The stable salts, SbCl(4)(+)Sb(OTeF(5))(6)(-) and SbBr(4)(+)Sb(OTeF(5))(6)(-), have been prepared by oxidation of Sb(OTeF(5))(3) with Cl(2) and Br(2), respectively. The SbBr(4)(+) cation is reported for the first time and is only the second example of a tetrahalostibonium(V) cation. The SbCl(4)(+) cation had been previously characterized as the Sb(2)F(11)(-), Sb(2)Cl(2)F(9)(-), and Sb(2)Cl(0.5)F(10.5)(-) salts. Both Sb(OTeF(5))(6)(-) salts have been characterized in the solid state by low-temperature Raman spectroscopy and X-ray crystallography. Owing to the weakly coordinating nature of the Sb(OTeF(5))(6)(-) anion, both salts are readily soluble in SO(2)ClF and have been characterized in solution by (121)Sb, (123)Sb, and (19)F NMR spectroscopy. The tetrahedral environments around the Sb atoms of the cations result in low electric field gradients at the quadrupolar (121)Sb and (123)Sb nuclei and correspondingly long relaxation times, allowing the first solution NMR characterization of a tetrahalocation of the heavy pnicogens. The following crystal structures are reported: SbCl(4)(+)Sb(OTeF(5))(6)(-), trigonal system, space group P&thremacr;, a = 10.022(1) ?, c = 18.995(4) ?, V = 1652.3(6) ?(3), D(calc) = 3.652 g cm(-)(3), Z = 2, R(1) = 0.0461; SbBr(4)(+)Sb(OTeF(5))(6)(-), trigonal system, space group P&thremacr;, a = 10.206(1) ?, c = 19.297(3) ?, V = 1740.9(5) ?(3), D(calc) = 3.806 g cm(-)(3), Z = 2, R(1) = 0.0425. The crystal structures of both Sb(OTeF(5))(6)(-) salts are similar and reveal considerably weaker interactions between anion and cation than in previously known SbCl(4)(+) salts. Both cations are undistorted tetrahedra with bond lengths of 2.221(3) ? for SbCl(4)(+) and 2.385(2) ? for SbBr(4)(+). The Raman spectra are consistent with undistorted SbX(4)(+) tetrahedra and have been assigned under T(d)() point symmetry. Trends within groups 15 and 17 are noted among the general valence force constants of the PI(4)(+), AsF(4)(+), AsBr(4)(+), AsI(4)(+), SbCl(4)(+) and SbBr(4)(+) cations, which have been calculated for the first time, and the previously determined force constants for NF(4)(+), NCl(4)(+), PF(4)(+), PCl(4)(+), PBr(4)(+), and AsCl(4)(+), which have been recalculated for the P and As cations in the present study. The SbCl(4)(+) salt is stable in SO(2)ClF solution, whereas the SbBr(4)(+) salt decomposes slowly in SO(2)ClF at room temperature and rapidly in the presence of Br(-) ion and in CH(3)CN solution at low temperatures. The major products of the decompositions are SbBr(2)(+)Sb(OTeF(5))(6)(-), as an adduct with CH(3)CN in CH(3)CN solvent, and Br(2).  相似文献   

14.
Lithium intercalation into the oxide slabs of the cation-deficient n = 2 Ruddlesden-Popper oxysulfide Y(2)Ti(2)O(5)S(2) to produce Li(x)Y(2)Ti(2)O(5)S(2) (0 < x < 2) is described. Neutron powder diffraction measurements reveal that at low levels of lithium intercalation into Y(2)Ti(2)O(5)S(2), the tetragonal symmetry of the host is retained: Li(0.30(5))Y(2)Ti(2)O(5)S(2), I4/mmm, a = 3.80002(2) A, c = 22.6396(2) A, Z = 2. The lithium ion occupies a site coordinated by four oxide ions in an approximately square planar geometry in the perovskite-like oxide slabs of the structure. At higher levels of lithium intercalation, the symmetry of the cell is lowered to orthorhombic: Li(0.99(5))Y(2)Ti(2)O(5)S(2), Immm, a = 3.82697(3) A, b = 3.91378(3) A, c = 22.2718(2) A, Z = 2, with ordering of Li(+) ions over two inequivalent sites. At still higher levels of lithium intercalation, tetragonal symmetry is regained: Li(1.52(5))Y(2)Ti(2)O(5)S(2), I4/mmm, a = 3.91443(4) A, c = 22.0669(3) A, Z = 2. A phase gap exists close to the transition from the tetragonal to orthorhombic structures (0.6 < x < 0.8). The changes in symmetry of the system with electron count may be considered analogous to a cooperative electronically driven Jahn-Teller type distortion. Magnetic susceptibility and resistivity measurements are consistent with metallic properties for x > 1, and the two-phase region is identified as coincident with an insulator to metal transition.  相似文献   

15.
We investigate the relaxation of photoexcited Li(2)(+) chromophores solvated in Ne(n) clusters (n = 2-22) by means of molecular dynamics with surface hopping. The simplicity of the electronic structure of these ideal systems is exploited to design an accurate and computationally efficient model. These systems present two series of conical intersections between the states correlated with the Li+Li(2s) and Li+Li(2p) dissociation limits of the Li(2)(+) molecule. Frank-Condon transition from the ground state to one of the three lowest excited states, hereafter indexed by ascending energy from 1 to 3, quickly drives the system toward the first series of conical intersections, which have a tremendous influence on the issue of the dynamics. The states 1 and 2, which originate in the Frank-Condon area from the degenerated nondissociative 1(2)Π(u) states of the bare Li(2)(+) molecule, relax mainly to Li+Li(2s) with a complete atomization of the clusters in the whole range of size n investigated here. The third state, which originates in the Frank-Condon area from the dissociative 1(2)Σ(u)(+) state of the bare Li(2)(+) molecule, exhibits a richer relaxation dynamics. Contrary to intuition, excitation into state 3 leads to less molecular dissociation, though the amount of energy deposited in the cluster by the excitation process is larger than for excitation into state 1 and 2. This extra amount of energy allows the system to reach the second series of conical intersections so that approximately 20% of the clusters are stabilized in the 2(2)Σ(g)(+) state potential well for cluster sizes n larger than 6.  相似文献   

16.
Product branching ratios (BRs) are reported for ion-molecule reactions of state-prepared nitrogen cation (N(2)(+)) with methane (CH(4)), acetylene (C(2)H(2)). and ethylene (C(2)H(4)) at low temperature using a modified ion imaging apparatus. These reactions are performed in a supersonic nozzle expansion characterized by a rotational temperature of 40 ± 5K. For the N(2)(+) + CH(4) reaction, a BR of 0.83:0.17 is obtained for the dissociative charge-transfer (CT) reaction that gives rise to the formation of CH(3)(+) and CH(2)(+) product ions, respectively. The N(2)(+) + C(2)H(2) ion-molecule reaction proceeds through a nondissociative CT process that results in the sole formation of C(2)H(2)(+) product ions. The reaction of N(2)(+) with C(2)H(4) leads to the formation of C(2)H(3)(+) and C(2)H(2)(+) product ions with a BR of 0.74:0.26, respectively. The reported BR for the N(2)(+) + C(2)H(4) reaction is supportive of a nonresonant dissociative CT mechanism similar to the one that accompanies the N(2)(+) + CH(4) reaction. No dependence of the branching ratios on N(2)(+) rotational level was observed. In addition to providing direct insight into the dynamics of the state-prepared N(2)(+) ion-molecule reactions with the target neutral hydrocarbon molecules, the reported low-temperature BRs are also important for accurate modeling of the nitrogen-dominated upper atmosphere of Saturn's moon, Titan.  相似文献   

17.
A comparative analysis of predictive ability of three approaches to estimate the rate constants of reactions of H(2), H, H(2)O and CH(4) with electronically excited O(2)(a(1)Δ(g)) and O(2)(b(1)Σ(g)(+)) molecules is conducted. The first approach is based on a detailed ab initio study of potential energy surfaces. The second one is known as the "bond energy-bond order" method, and the third approach is a modification of the updated method of vibronic terms that makes it possible to evaluate the activation energy of reactions involving electronically excited species. The comparison showed that the estimates of the energy barrier by the updated method of vibronic terms for some reactions can be in good agreement with ab initio calculations and available experimental data. It was revealed that reactions of O(2)(b(1)Σ(g)(+)) molecules with H(2), H(2)O and CH(4) molecules and with the H atom result in the formation of electronically excited species. The reactivity of O(2)(b(1)Σ(g)(+)) molecules is smaller than that of O(2)(a(1)Δ(g)) ones, but much higher as compared to the reactivity of ground state O(2) molecules. For each reaction under study involving oxygen molecules in the excited electronic states O(2)(a(1)Δ(g)) and O(2)(b(1)Σ(g)(+)) the recommended temperature-dependent rate constants are presented.  相似文献   

18.
19.
A high yield of carbon chains has been produced by the laser ablation of carbon rods having (13)C enrichment. FTIR spectroscopy of these molecules trapped in solid Ar has resulted in the identification of two new combination bands for linear C(5) and C(9). The (ν(1) + ν(4)) combination band of linear C(5) has been observed at 3388.8 cm(-1), and comparison of (13)C isotopic shift measurements with the predictions of density functional theory calculations (DFT) at the B3LYP/cc-pVDZ level makes possible the assignment of the ν(1)(σ(g)(+)) stretching fundamental at 1946 cm(-1). Similarly, the observation of the (ν(2) + ν(7)) combination band of linear C(9) at 3471.8 cm(-1) enables the assignment of the ν(2)(σ(g)(+)) stretching fundamental at 1871 cm(-1). The third and weakest of the infrared stretching fundamentals of linear C(7), the ν(6)(σ(u)(+)) fundamental at 1100.1 cm(-1), has also been assigned.  相似文献   

20.
The fulvenallenyl cation (C(7)H(5)(+)) and its complex with an argon atom have been studied by explicitly correlated coupled cluster theory at the CCSD(T)-F12x(x = a, b) level and by the double-hybrid density functional B2PLYP-D. For the free cation, an accurate equilibrium structure has been established and ground-state rotational constants of A(0) = 8116.4 MHz, B(0) = 2004.3 MHz, and C(0) = 1606.9 MHz are predicted. The equilibrium dipole moment is calculated to be μ(e) = 1.305 D, with the positive end of the dipole at the acetylenic hydrogen site. Anharmonic wavenumbers of C(7)H(5)(+) were obtained by combination of harmonic CCSD(T*)-F12a values and B2PLYP-D anharmonic contributions. The most intense vibration is the pseudoantisymmetric CC stretching vibration at 2083 cm(-1). The potential energy surface of the complex C(7)H(5)(+)·Ar is characterized by two energy minima of C(s) symmetry which are separated by a very low energy barrier. The dissociation energy of the most stable structure is predicted to be D(0) = 530 ± 30 cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号